Concept:
Let \(S_n\) be the sum of the first \(n\) terms of an A.P.
Let \(a_n\) be the \(n^{th}\) term of the A.P.
The \(n^{th}\) term can be found using the relation: \(a_n = S_n - S_{n-1}\) (for \(n>1\)).
The first term \(a_1 = S_1\).
Alternatively, if \(S_n\) is a quadratic in \(n\) of the form \(An^2+Bn\), then it represents the sum of an AP. The common difference \(d = 2A\) and the first term \(a_1 = A+B\). Then \(a_k = a_1 + (k-1)d\).
Method 1: Using \(a_n = S_n - S_{n-1}\)
Given \(S_n = \frac{3n^2}{2} + \frac{5n}{2}\).
We need the 25th term, \(a_{25}\). So, \(a_{25} = S_{25} - S_{24}\).
Calculate \(S_{25}\):
\(S_{25} = \frac{3(25)^2}{2} + \frac{5(25)}{2} = \frac{3(625)}{2} + \frac{125}{2} = \frac{1875 + 125}{2} = \frac{2000}{2} = 1000\).
Calculate \(S_{24}\):
\(S_{24} = \frac{3(24)^2}{2} + \frac{5(24)}{2} = \frac{3(576)}{2} + \frac{120}{2} = \frac{1728 + 120}{2} = \frac{1848}{2} = 924\).
Now, calculate \(a_{25}\):
\(a_{25} = S_{25} - S_{24} = 1000 - 924 = 76\).
Method 2: Finding \(a_1\) and \(d\)
Given \(S_n = \frac{3}{2}n^2 + \frac{5}{2}n\).
This is in the form \(An^2+Bn\) where \(A = \frac{3}{2}\) and \(B = \frac{5}{2}\).
First term, \(a_1 = S_1 = \frac{3(1)^2}{2} + \frac{5(1)}{2} = \frac{3}{2} + \frac{5}{2} = \frac{8}{2} = 4\).
(Using shortcut: \(a_1 = A+B = \frac{3}{2} + \frac{5}{2} = \frac{8}{2} = 4\)).
Common difference, \(d = 2A = 2 \times \frac{3}{2} = 3\).
The \(k^{th}\) term of an A.P. is \(a_k = a_1 + (k-1)d\).
We need the 25th term (\(k=25\)):
\(a_{25} = a_1 + (25-1)d\)
\(a_{25} = 4 + (24)(3)\)
\(a_{25} = 4 + 72\)
\(a_{25} = 76\).
Both methods yield 76.