Step 1: General Form of an A.P.An arithmetic progression (A.P.) has the general form:
\[ a_k = a_1 + (k-1)d \]
where:
- \( a_1 \) is the first term,
- \( d \) is the common difference.
The sum of the first \( n \) terms (\( S_n \)) is given by:
\[ S_n = \frac{n}{2} [2a_1 + (n-1)d] \]
\subsection{Step 2: Use Given Information \( a_6 = 7 \)}
Given the 6th term:
\[ a_6 = a_1 + 5d = 7 \quad \text{(1)} \]
Step 3: Use Given Information \( S_7 = 7 \)Given the sum of the first 7 terms:
\[ S_7 = \frac{7}{2} [2a_1 + 6d] = 7 \]
Simplify:
\begin{align}
\frac{7}{2} [2a_1 + 6d] &= 7
[2a_1 + 6d] &= 2 \quad \text{(Divide both sides by 7/2)}
a_1 + 3d &= 1 \quad \text{(Divide by 2)} \quad \text{(2)}
\end{align}
Step 4: Solve for \( a_1 \) and \( d \)From equation (2):
\[ a_1 = 1 - 3d \quad \text{(3)} \]
Substitute (3) into equation (1):
\begin{align}
(1 - 3d) + 5d &= 7
1 + 2d &= 7 \\2d &= 6 \\d &= 3
\end{align}
Now substitute \( d = 3 \) back into equation (3):
\[ a_1 = 1 - 3(3) = -8 \]
Step 5: Find \( n \) for \( S_n = 700 \)Using the sum formula with \( a_1 = -8 \) and \( d = 3 \):
\[ S_n = \frac{n}{2} [2(-8) + (n-1)(3)] = 700 \]
Simplify:
\begin{align}
\frac{n}{2} [-16 + 3n - 3] &= 700
\frac{n}{2} [3n - 19] &= 700
n(3n - 19) &= 1400 \\3n^2 - 19n - 1400 &= 0
\end{align}
Solve the quadratic equation:
\[ n = \frac{19 \pm \sqrt{(-19)^2 - 4 \cdot 3 \cdot (-1400)}}{2 \cdot 3} \]
\[ n = \frac{19 \pm \sqrt{361 + 16800}}{6} \]
\[ n = \frac{19 \pm \sqrt{17161}}{6} \]
\[ n = \frac{19 \pm 131}{6} \]
Possible solutions:
- \( n = \frac{19 + 131}{6} = 25 \)
- \( n = \frac{19 - 131}{6} \) (negative, discard)
Thus, \( n = 25 \).
Step 6: Find \( a_n \) (the \( n \)-th term)Using the general form:
\[ a_n = a_1 + (n-1)d \]
For \( n = 25 \):
\begin{align}
a_{25} &= -8 + (25-1) \times 3
&= -8 + 72 \\&= 64
\end{align}
ConclusionThe value of \( a_n \) is \( 64 \), which corresponds to option 3.