The sum of the even terms:
\[
a_2 + a_4 + \cdots + a_{2n} = 30 \quad \text{(Equation 1)}
\]
The sum of the odd terms:
\[
a_1 + a_3 + \cdots + a_{2n-1} = 24 \quad \text{(Equation 2)}
\]
Subtracting Equation 2 from Equation 1:
\[
(a_2 - a_1) + (a_4 - a_3) + \cdots + (a_{2n} - a_{2n-1}) = 6
\]
\[
\frac{n}{2} \cdot d = 6 \quad \text{(where \( d \) is the common difference)}
\]
\[
n d = 6 \quad \Rightarrow \quad n = 12
\]
From the equation \( a_{n} - a_1 = \frac{21}{2} \):
\[
nd - d = \frac{21}{2} \quad \Rightarrow \quad 12d - d = \frac{21}{2}
\]
\[
11d = \frac{21}{2} \quad \Rightarrow \quad d = \frac{3}{2}
\]
The sum of odd terms:
\[
S_{\text{odd}} = \frac{4}{2} \left[ 2a_1 + (4-1) \cdot d \right] = 24
\]
\[
a_1 = \frac{3}{2}
\]
The A.P. is: \( \frac{3}{2}, \, 3, \, 9, \, 12, 15, 21, 9, 21, \dots \)
Thus, the number of terms is 4.