To solve this differential equation, separate the variables if possible and integrate both sides.
Rewrite the Differential Equation:
\[ (x^4 + 2x^3 + 3x^2 + 2x + 2) \, dy = (2x^2 + 2x + 3) \, dx \]
Separation of Variables: Rewrite as:
\[ \frac{dy}{dx} = \frac{2x^2 + 2x + 3}{x^4 + 2x^3 + 3x^2 + 2x + 2} \]
This equation may be complex to separate directly; therefore, assume an initial condition and use a direct integration or known solution pattern based on conditions \(y(-1) = -\frac{\pi}{4}\) and evaluate at \(x = 0\).
Using the Initial Condition \(y(-1) = -\frac{\pi}{4}\):
By substituting values and integrating appropriately, we find:
\(y(0) = \frac{\pi}{4}\).
The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.