Starting with the differential equation:
\[(e^y + 1) \cos x \, dx + e^y \sin x \, dy = 0\]
Rewrite as:
\[\implies d \left( (e^y + 1) \sin x \right) = 0\]
Integrating, we get:
\[(e^y + 1) \sin x = C\]
Since the solution passes through \( \left( \frac{\pi}{2}, 0 \right) \), substitute \( x = \frac{\pi}{2} \) and \( y = 0 \):
\[e^0 + 1 = C \implies C = 2\]
Now, let \( x = \frac{\pi}{6} \):
\[(e^y + 1) \sin \frac{\pi}{6} = 2\]
\[\implies \frac{e^y + 1}{2} = 2\]
\[\implies e^y = 3\]
Thus, \( e^{y \left( \frac{\pi}{6} \right)} = 3 \).
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: