To solve, begin by analyzing the differential equation: \((1 + y^2)(1 + \log_e x) \, dx + x \, dy = 0\). Rewrite it in standard form: \(\frac{dy}{dx} = -\frac{(1 + y^2)(1 + \log_e x)}{x}\).
The problem describes an implicit differential equation separable via substitution: let \(v = 1 + \log_e x\), then \(dv = \frac{dx}{x}\). The equation transforms to:
\(\frac{dy}{dy} = -v(1 + y^2) \Rightarrow \frac{dy}{1 + y^2} = -v \, dv\).
Integrate both sides:
\(\int \frac{dy}{1 + y^2} = \int -v \, dv\).
Using integration formulas, \(\int \frac{dy}{1 + y^2} = \tan^{-1}(y)\) and \(\int -v \, dv = -\frac{v^2}{2}\), the integrated equation becomes:
\(\tan^{-1}(y) = -\frac{(1 + \log_e x)^2}{2} + C\).
Substitute initial condition \((x, y) = (1, 1)\):
\(\tan^{-1}(1) = -\frac{(1 + \log_e 1)^2}{2} + C = \frac{\pi}{4} = C\).
The equation becomes:
\(\tan^{-1}(y) = -\frac{(1 + \log_e x)^2}{2} + \frac{\pi}{4}\).
For \(x = e\), \(v = 1 + \log_e e = 2\). At this point, \(y(e) = \frac{\alpha - \tan\left(\frac{3}{2}\right)}{\beta + \tan\left(\frac{3}{2}\right)}\), replaced in our derived equation:
\(\tan^{-1}\left(\frac{\alpha - \tan\left(\frac{3}{2}\right)}{\beta + \tan\left(\frac{3}{2}\right)}\right) = -2 + \frac{\pi}{4} = \frac{\pi}{4} - 2\).
Inverting \(\tan^{-1}\), we solve for \(\alpha\) and \(\beta\):
\(\frac{\alpha - \tan\left(\frac{3}{2}\right)}{\beta + \tan\left(\frac{3}{2}\right)} = \tan\left(\frac{\pi}{4} - 2\right)\).
Assume \(A = \tan\left(\frac{3}{2}\right)\), simplify using the tangent subtraction identity, \(\tan(x - y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}\):
\(T = \tan\left(\frac{\pi}{4} - 2\right)\). Find \(T\), equate and solve for \(\alpha\) and \(\beta\) in terms of known values and ensure expressions balance.
Finally, calculate \(\alpha + 2\beta\) = 3.
\[ \int \left( \frac{1}{x} + \frac{\ln x}{x} \right) dx + \int \frac{dy}{1 + y^2} = 0 \]
Integrating, we get:
\[ \ln x + \frac{(\ln x)^2}{2} + \tan^{-1} y = C \]
Substitute \(x = 1\) and \(y = 1\) to find \(C\):
\[ \ln 1 + \frac{(\ln 1)^2}{2} + \tan^{-1}(1) = C \Rightarrow C = \frac{\pi}{4} \]
\[ \ln x + \frac{(\ln x)^2}{2} + \tan^{-1} y = \frac{\pi}{4} \]
Substitute \(x = e\) into the equation:
\[ \ln e + \frac{(\ln e)^2}{2} + \tan^{-1} y = \frac{\pi}{4} \]
\[ 1 + \frac{1}{2} + \tan^{-1} y = \frac{\pi}{4} \]
Solving for \(y\), we get:
\[ y = \tan \left( \frac{\pi}{4} - \frac{3}{2} \right) = \frac{1 - \tan \frac{3}{2}}{1 + \tan \frac{3}{2}} \]
Comparing with the given expression for \(y(e)\), we find \(\alpha = 1\) and \(\beta = 1\).
\[ \alpha + 2\beta = 1 + 2 \cdot 1 = 3 \]
So, the correct answer is: 3
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 