\[ \int \left( \frac{1}{x} + \frac{\ln x}{x} \right) dx + \int \frac{dy}{1 + y^2} = 0 \]
Integrating, we get:
\[ \ln x + \frac{(\ln x)^2}{2} + \tan^{-1} y = C \]
Substitute \(x = 1\) and \(y = 1\) to find \(C\):
\[ \ln 1 + \frac{(\ln 1)^2}{2} + \tan^{-1}(1) = C \Rightarrow C = \frac{\pi}{4} \]
\[ \ln x + \frac{(\ln x)^2}{2} + \tan^{-1} y = \frac{\pi}{4} \]
Substitute \(x = e\) into the equation:
\[ \ln e + \frac{(\ln e)^2}{2} + \tan^{-1} y = \frac{\pi}{4} \]
\[ 1 + \frac{1}{2} + \tan^{-1} y = \frac{\pi}{4} \]
Solving for \(y\), we get:
\[ y = \tan \left( \frac{\pi}{4} - \frac{3}{2} \right) = \frac{1 - \tan \frac{3}{2}}{1 + \tan \frac{3}{2}} \]
Comparing with the given expression for \(y(e)\), we find \(\alpha = 1\) and \(\beta = 1\).
\[ \alpha + 2\beta = 1 + 2 \cdot 1 = 3 \]
So, the correct answer is: 3
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \( f(x + y) = f(x) f(y) \) for all \( x, y \in \mathbb{R} \). If \( f'(0) = 4a \) and \( f \) satisfies \( f''(x) - 3a f'(x) - f(x) = 0 \), where \( a > 0 \), then the area of the region R = {(x, y) | 0 \(\leq\) y \(\leq\) f(ax), 0 \(\leq\) x \(\leq\) 2\ is :