Question:

If the solution curve \( y = y \, x \) of the differential equation \((1 + y^2) \left(1 + \log_e x\right) dx + x \, dy = 0, \quad x > 0\) passes through the point \( (1, 1) \) and\[y(e) = \frac{\alpha - \tan\left(\frac{3}{2}\right)}{\beta + \tan\left(\frac{3}{2}\right)},\]then \( \alpha + 2\beta \) is

Updated On: Nov 3, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 3

Approach Solution - 1

To solve, begin by analyzing the differential equation: \((1 + y^2)(1 + \log_e x) \, dx + x \, dy = 0\). Rewrite it in standard form: \(\frac{dy}{dx} = -\frac{(1 + y^2)(1 + \log_e x)}{x}\). 

The problem describes an implicit differential equation separable via substitution: let \(v = 1 + \log_e x\), then \(dv = \frac{dx}{x}\). The equation transforms to:

\(\frac{dy}{dy} = -v(1 + y^2) \Rightarrow \frac{dy}{1 + y^2} = -v \, dv\).

Integrate both sides:

\(\int \frac{dy}{1 + y^2} = \int -v \, dv\).

Using integration formulas, \(\int \frac{dy}{1 + y^2} = \tan^{-1}(y)\) and \(\int -v \, dv = -\frac{v^2}{2}\), the integrated equation becomes:

\(\tan^{-1}(y) = -\frac{(1 + \log_e x)^2}{2} + C\).

Substitute initial condition \((x, y) = (1, 1)\):

\(\tan^{-1}(1) = -\frac{(1 + \log_e 1)^2}{2} + C = \frac{\pi}{4} = C\).

The equation becomes:

\(\tan^{-1}(y) = -\frac{(1 + \log_e x)^2}{2} + \frac{\pi}{4}\).

For \(x = e\), \(v = 1 + \log_e e = 2\). At this point, \(y(e) = \frac{\alpha - \tan\left(\frac{3}{2}\right)}{\beta + \tan\left(\frac{3}{2}\right)}\), replaced in our derived equation:

\(\tan^{-1}\left(\frac{\alpha - \tan\left(\frac{3}{2}\right)}{\beta + \tan\left(\frac{3}{2}\right)}\right) = -2 + \frac{\pi}{4} = \frac{\pi}{4} - 2\).

Inverting \(\tan^{-1}\), we solve for \(\alpha\) and \(\beta\):

\(\frac{\alpha - \tan\left(\frac{3}{2}\right)}{\beta + \tan\left(\frac{3}{2}\right)} = \tan\left(\frac{\pi}{4} - 2\right)\).

Assume \(A = \tan\left(\frac{3}{2}\right)\), simplify using the tangent subtraction identity, \(\tan(x - y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}\):

\(T = \tan\left(\frac{\pi}{4} - 2\right)\). Find \(T\), equate and solve for \(\alpha\) and \(\beta\) in terms of known values and ensure expressions balance.

Finally, calculate \(\alpha + 2\beta\) = 3.

Was this answer helpful?
0
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

Step 1: Separate Variables in the Differential Equation

\[ \int \left( \frac{1}{x} + \frac{\ln x}{x} \right) dx + \int \frac{dy}{1 + y^2} = 0 \]

Step 2: Integrate Both Sides

Integrating, we get:

\[ \ln x + \frac{(\ln x)^2}{2} + \tan^{-1} y = C \]

Step 3: Apply Initial Condition \((x, y) = (1, 1)\)

Substitute \(x = 1\) and \(y = 1\) to find \(C\):

\[ \ln 1 + \frac{(\ln 1)^2}{2} + \tan^{-1}(1) = C \Rightarrow C = \frac{\pi}{4} \]

Step 4: Rewrite the Solution with \(C = \frac{\pi}{4}\)

\[ \ln x + \frac{(\ln x)^2}{2} + \tan^{-1} y = \frac{\pi}{4} \]

Step 5: Evaluate \(y(e)\)

Substitute \(x = e\) into the equation:

\[ \ln e + \frac{(\ln e)^2}{2} + \tan^{-1} y = \frac{\pi}{4} \]

\[ 1 + \frac{1}{2} + \tan^{-1} y = \frac{\pi}{4} \]

Solving for \(y\), we get:

\[ y = \tan \left( \frac{\pi}{4} - \frac{3}{2} \right) = \frac{1 - \tan \frac{3}{2}}{1 + \tan \frac{3}{2}} \]

Step 6: Identify \(\alpha\) and \(\beta\)

Comparing with the given expression for \(y(e)\), we find \(\alpha = 1\) and \(\beta = 1\).

Step 7: Calculate \(\alpha + 2\beta\)

\[ \alpha + 2\beta = 1 + 2 \cdot 1 = 3 \]

So, the correct answer is: 3

Was this answer helpful?
0
0

Top Questions on Differential equations

View More Questions

Questions Asked in JEE Main exam

View More Questions