\[ \int \left( \frac{1}{x} + \frac{\ln x}{x} \right) dx + \int \frac{dy}{1 + y^2} = 0 \]
Integrating, we get:
\[ \ln x + \frac{(\ln x)^2}{2} + \tan^{-1} y = C \]
Substitute \(x = 1\) and \(y = 1\) to find \(C\):
\[ \ln 1 + \frac{(\ln 1)^2}{2} + \tan^{-1}(1) = C \Rightarrow C = \frac{\pi}{4} \]
\[ \ln x + \frac{(\ln x)^2}{2} + \tan^{-1} y = \frac{\pi}{4} \]
Substitute \(x = e\) into the equation:
\[ \ln e + \frac{(\ln e)^2}{2} + \tan^{-1} y = \frac{\pi}{4} \]
\[ 1 + \frac{1}{2} + \tan^{-1} y = \frac{\pi}{4} \]
Solving for \(y\), we get:
\[ y = \tan \left( \frac{\pi}{4} - \frac{3}{2} \right) = \frac{1 - \tan \frac{3}{2}}{1 + \tan \frac{3}{2}} \]
Comparing with the given expression for \(y(e)\), we find \(\alpha = 1\) and \(\beta = 1\).
\[ \alpha + 2\beta = 1 + 2 \cdot 1 = 3 \]
So, the correct answer is: 3
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: