By conservation of angular momentum:
\[ I_1 \omega_1 = I_2 \omega_2 \]
Moment of inertia of a sphere:
\[ I = \frac{2}{5} M R^2 \]
Angular velocity relation:
\[ \omega = \frac{2 \pi}{T} \]
\[ \frac{2}{5} M R^2 \cdot \frac{2 \pi}{T_1} = \frac{2}{5} M \left( \frac{3}{4} R \right)^2 \cdot \frac{2 \pi}{T_2} \]
Simplifying:
\[ \frac{1}{T_1} = \frac{9}{16} \cdot \frac{1}{T_2} \]
\[ T_2 = \frac{16}{9} \cdot T_1 \]
Substituting $T_1 = 24$ hours:
\[ T_2 = \frac{9}{16} \cdot 24 = \frac{27}{2} = 13 \, \text{hours} \, 30 \, \text{minutes}. \]
Step 1: Apply Conservation of Angular Momentum
Initial angular momentum \( L \) must equal final angular momentum \( L' \):
\( L = L' \rightarrow I \cdot \omega = I' \cdot \omega' \).
Since radius reduces to \( \frac{3}{4}r \), moment of inertia becomes \( I' = \frac{2}{5} m \left(\frac{3}{4}r\right)^2 = \frac{9}{16}I \).
So, \( I \cdot \omega = \frac{9}{16}I \cdot \omega' \).
Thus, \( \omega' = \frac{16}{9} \omega \).
Step 2: Relating Angular Velocity and Time Period
The period \( T \) of Earth's rotation is related to angular velocity by:
\( \omega = \frac{2\pi}{T} \).
Therefore,
\( \omega' = \frac{2\pi}{T'} = \frac{16}{9} \omega \).
Hence, \( \frac{2\pi}{T'} = \frac{16}{9} \cdot \frac{2\pi}{T} \).
It leads to:
\( T' = \frac{9}{16} T \).
Given \( T = 24 \) hours, then:
\( T' = \frac{9}{16} \times 24 = 13.5 \) hours.
Final Check
The new duration of Earth's day is 13.5 hours.
Hence, the answer is 13 hours 30 minutes.
If the primary coil of a transformer has 100 turns and the secondary has 200 turns, then for an input of 220 V at 10 A, find the output current in the step-up transformer.
Js is the unit of …….. physical quantity.
To emit an electron from the metal, the minimum electric field required is …..
Cellular phones use radio waves to transmit voice communication in the ……
If $ \theta \in [-2\pi,\ 2\pi] $, then the number of solutions of $$ 2\sqrt{2} \cos^2\theta + (2 - \sqrt{6}) \cos\theta - \sqrt{3} = 0 $$ is: