To check if \( ABCD \) is a parallelogram:
- Compute vectors \( \vec{AB} \), \( \vec{CD} \) and check if they are equal.
- Also check \( \vec{BC} \) and \( \vec{DA} \)
If both pairs of opposite sides are not equal or not parallel, then it is not a parallelogram.
\[
\vec{AB} = \vec{B} - \vec{A} = (-6\hat{i} - 2\hat{j} + 3\hat{k})
\]
\[
\vec{CD} = \vec{D} - \vec{C} = (6\hat{i} + 2\hat{j} + 1\hat{k})
\Rightarrow \vec{AB} \neq \vec{CD}, \text{ nor opposite}
\]
Hence, \( ABCD \) is not a parallelogram.