We are given the complex number \( z = x + iy \) and its conjugate \( \bar{z} = x - iy \). The given expression is:
\[
\frac{z\bar{z} + 1}{z - 1}.
\]
Step 1: Expand the given expression
Since \( z\bar{z} = x^2 + y^2 \), we rewrite:
\[
\frac{x^2 + y^2 + 1}{(x + iy) - 1} = \frac{x^2 + y^2 + 1}{x - 1 + iy}.
\]
Let this expression be purely imaginary, say \( i k \), meaning the real part must be zero:
\[
\frac{x^2 + y^2 + 1}{x - 1 + iy} = i k.
\]
Step 2: Rationalizing
Multiplying numerator and denominator by the conjugate of the denominator:
\[
\frac{(x^2 + y^2 + 1)(x - 1 - iy)}{(x - 1)^2 + y^2} = i k.
\]
Expanding the numerator:
\[
(x^2 + y^2 + 1)(x - 1) - i (x^2 + y^2 + 1) y.
\]
For the expression to be purely imaginary, the real part must be zero:
\[
(x^2 + y^2 + 1)(x - 1) = 0.
\]
Since \( x^2 + y^2 + 1 \neq 0 \) for real \( x, y \), we get:
\[
x^2 + y^2 - x + y = 0.
\]
Step 3: Excluding the singularity at \( (1,0) \)
The denominator of the original fraction must not be zero:
\[
(x - 1) + iy \neq 0 \Rightarrow (x, y) \neq (1,0).
\]
Thus, the required locus is:
\[
x^2 + y^2 - x + y = 0, \quad (x, y) \neq (1,0).
\]
Thus, the correct answer is:
\[
\boxed{x^2 + y^2 - x + y = 0, \quad (x, y) \neq (1,0).}
\]