Given:
\( |A| = 2 \)
\( |3A| = 3^3 \cdot |A| \)
\( |3A| = 3^3 \cdot 2 = 27 \cdot 2 \)
\( \text{Adj.}(|3A|A^2) = \text{Adj.}\{(3^3 \cdot 2)A^2\} \)
\( = (2 \cdot 3^3)^2 \cdot (\text{Adj.}A)^2 \)
\( = 2^2 \cdot 36 \cdot (\text{Adj.}A)^2 \)
\( |3 \cdot \text{Adj.}(|3A|A^2)| = |2^2 \cdot 36 \cdot (\text{Adj.}A)^2| \)
\( = (2^2 \cdot 3^7)^3 \cdot |\text{Adj.}A|^2 \)
\( = 2^6 \cdot 3^{21} \cdot (|A|^2)^2 \)
\( = 2^6 \cdot 3^{21} \cdot (2^2)^2 \)
\( = 2^{10} \cdot 3^{21} \)
\( |3 \cdot \text{Adj.}(|3A|A^2)| = 2^{10} \cdot 3^{21} \)
The correct option is (B): \(2^{10}.3^{21}\)
For a $3 \times 3$ matrix $A$, if $A(\operatorname{adj} A) = \begin{bmatrix} 99 & 0 & 0 \\0 & 99 & 0 \\0 & 0 & 99 \end{bmatrix}$, then $\det(A)$ is equal to:
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to:
Let \( \alpha, \beta \) be the roots of the equation \( x^2 - ax - b = 0 \) with \( \text{Im}(\alpha) < \text{Im}(\beta) \). Let \( P_n = \alpha^n - \beta^n \). If \[ P_3 = -5\sqrt{7}, \quad P_4 = -3\sqrt{7}, \quad P_5 = 11\sqrt{7}, \quad P_6 = 45\sqrt{7}, \] then \( |\alpha^4 + \beta^4| \) is equal to:
A matrix is a rectangular array of numbers, variables, symbols, or expressions that are defined for the operations like subtraction, addition, and multiplications. The size of a matrix is determined by the number of rows and columns in the matrix.