Given:
\( |A| = 2 \)
\( |3A| = 3^3 \cdot |A| \)
\( |3A| = 3^3 \cdot 2 = 27 \cdot 2 \)
\( \text{Adj.}(|3A|A^2) = \text{Adj.}\{(3^3 \cdot 2)A^2\} \)
\( = (2 \cdot 3^3)^2 \cdot (\text{Adj.}A)^2 \)
\( = 2^2 \cdot 36 \cdot (\text{Adj.}A)^2 \)
\( |3 \cdot \text{Adj.}(|3A|A^2)| = |2^2 \cdot 36 \cdot (\text{Adj.}A)^2| \)
\( = (2^2 \cdot 3^7)^3 \cdot |\text{Adj.}A|^2 \)
\( = 2^6 \cdot 3^{21} \cdot (|A|^2)^2 \)
\( = 2^6 \cdot 3^{21} \cdot (2^2)^2 \)
\( = 2^{10} \cdot 3^{21} \)
\( |3 \cdot \text{Adj.}(|3A|A^2)| = 2^{10} \cdot 3^{21} \)
The correct option is (B): \(2^{10}.3^{21}\)
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)
A matrix is a rectangular array of numbers, variables, symbols, or expressions that are defined for the operations like subtraction, addition, and multiplications. The size of a matrix is determined by the number of rows and columns in the matrix.