Given:
\( |A| = 2 \)
\( |3A| = 3^3 \cdot |A| \)
\( |3A| = 3^3 \cdot 2 = 27 \cdot 2 \)
\( \text{Adj.}(|3A|A^2) = \text{Adj.}\{(3^3 \cdot 2)A^2\} \)
\( = (2 \cdot 3^3)^2 \cdot (\text{Adj.}A)^2 \)
\( = 2^2 \cdot 36 \cdot (\text{Adj.}A)^2 \)
\( |3 \cdot \text{Adj.}(|3A|A^2)| = |2^2 \cdot 36 \cdot (\text{Adj.}A)^2| \)
\( = (2^2 \cdot 3^7)^3 \cdot |\text{Adj.}A|^2 \)
\( = 2^6 \cdot 3^{21} \cdot (|A|^2)^2 \)
\( = 2^6 \cdot 3^{21} \cdot (2^2)^2 \)
\( = 2^{10} \cdot 3^{21} \)
\( |3 \cdot \text{Adj.}(|3A|A^2)| = 2^{10} \cdot 3^{21} \)
The correct option is (B): \(2^{10}.3^{21}\)

Let \[ f(x)=\int \frac{7x^{10}+9x^8}{(1+x^2+2x^9)^2}\,dx \] and $f(1)=\frac14$. Given that 
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.
A matrix is a rectangular array of numbers, variables, symbols, or expressions that are defined for the operations like subtraction, addition, and multiplications. The size of a matrix is determined by the number of rows and columns in the matrix.
