Given the matrix \( A \) and one of its eigenvectors \( \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \), we need to check which of the given vectors are eigenvectors of \( A \).
For an eigenvector \( v \), we have the relation:
\[
A v = \lambda v
\]
where \( \lambda \) is the corresponding eigenvalue.
The matrix \( A \) is:
\[
A = \begin{pmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{pmatrix}
\]
Let’s check option (4) \( \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \) by multiplying it with \( A \):
\[
A \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} =
\begin{pmatrix}
3(1) + (-1)(-2) + 1(1) \\
-1(1) + 5(-2) + (-1)(1) \\
1(1) + (-1)(-2) + 3(1)
\end{pmatrix}
=
\begin{pmatrix}
3 + 2 + 1 \\
-1 - 10 - 1 \\
1 + 2 + 3
\end{pmatrix}
=
\begin{pmatrix}
6 \\
-12 \\
6
\end{pmatrix}
\]
This simplifies to:
\[
A \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} = 6 \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}
\]
This shows that \( \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \) is indeed an eigenvector of \( A \), corresponding to the eigenvalue \( \lambda = 6 \).
Therefore, the correct answer is option (4).