If the lines \(\frac{x-1}{-3}\)=\(\frac{y-2}{2k}\)=\(\frac{z-3}{2} \) and \(\frac{x-1}{3k}\)=\(\frac{y-1}{1}\) = \(\frac{z-6}{-5}\) , are perpendicular, find the value of k.
The direction of ratios of the lines,\(\frac{x-1}{-3}\)=\(\frac{y-2}{2k}\)=\(\frac{z-3}{2} \) and \(\frac{x-1}{3k}\)=\(\frac{y-1}{1}\)=\(\frac{z-6}{-5}\) , are -3,2k,2 and 3k,1,-5 respectively.
It is known that two lines with direction ratios a1, b1, c1 and a2, b2, c2 are perpendicular, if a1a2+b1b2+c1c2=0
∴-3(3k)+2k×1+2(-5)=0
⇒-9k+2k-10=0
⇒7k=-10
⇒k=-10/7
Therefore, for k=-10/7, the given lines are perpendicular to each other.
List - I | List - II | ||
(P) | γ equals | (1) | \(-\hat{i}-\hat{j}+\hat{k}\) |
(Q) | A possible choice for \(\hat{n}\) is | (2) | \(\sqrt{\frac{3}{2}}\) |
(R) | \(\overrightarrow{OR_1}\) equals | (3) | 1 |
(S) | A possible value of \(\overrightarrow{OR_1}.\hat{n}\) is | (4) | \(\frac{1}{\sqrt6}\hat{i}-\frac{2}{\sqrt6}\hat{j}+\frac{1}{\sqrt6}\hat{k}\) |
(5) | \(\sqrt{\frac{2}{3}}\) |