If the function f(x) = \(\sqrt{x^2 - 4}\) satisfies the Lagrange’s Mean Value Theorem on \([2, 4]\), then the value of \( C \) is}
Step 1: Verify the applicability of the Mean Value Theorem
Lagrange’s Mean Value Theorem states that if a function \( f(x) \) is continuous and differentiable on \( [a, b] \), then there exists some \( c \in (a, b) \) such that: \[ f'(c) = \frac{f(b) - f(a)}{b - a}. \] The given function is: \[ f(x) = \sqrt{x^2 - 4}. \] It is continuous and differentiable on \( (2,4] \), satisfying the conditions of the Mean Value Theorem.
Step 2: Compute \( f(2) \) and \( f(4) \)
\[ f(2) = \sqrt{2^2 - 4} = \sqrt{0} = 0. \] \[ f(4) = \sqrt{4^2 - 4} = \sqrt{12} = 2\sqrt{3}. \]
Step 3: Compute the Average Rate of Change
\[ \frac{f(4) - f(2)}{4 - 2} = \frac{2\sqrt{3} - 0}{2} = \sqrt{3}. \]
Step 4: Compute \( f'(x) \)
Using the chain rule, we differentiate \( f(x) \): \[ f'(x) = \frac{1}{2\sqrt{x^2 - 4}} \cdot 2x = \frac{x}{\sqrt{x^2 - 4}}. \]
Step 5: Solve for \( c \)
By the Mean Value Theorem, \[ \frac{c}{\sqrt{c^2 - 4}} = \sqrt{3}. \] Squaring both sides, \[ \frac{c^2}{c^2 - 4} = 3. \] Cross-multiplying, \[ c^2 = 3(c^2 - 4). \] \[ c^2 = 3c^2 - 12. \] \[ -2c^2 = -12. \] \[ c^2 = 6. \] \[ c = \pm \sqrt{6}. \] Since \( c \) is in \( (2,4) \), we take the positive root: \[ c = \sqrt{6}. \]
Final Answer: \( \boxed{\sqrt{6}} \).
Step 1: Compute the difference quotient (MVT RHS)
First, compute \( f(4) \) and \( f(2) \): \[ f(4) = \sqrt{4^2 - 4} = \sqrt{16 - 4} = \sqrt{12} = 2\sqrt{3} \] \[ f(2) = \sqrt{2^2 - 4} = \sqrt{0} = 0 \] So: \[ \frac{f(4) - f(2)}{4 - 2} = \frac{2\sqrt{3} - 0}{2} = \sqrt{3} \]
Step 2: Differentiate \( f(x) \)
Let \( f(x) = \sqrt{x^2 - 4} = (x^2 - 4)^{1/2} \), then: \[ f'(x) = \frac{1}{2}(x^2 - 4)^{-1/2} \cdot 2x = \frac{x}{\sqrt{x^2 - 4}} \] Set \( f'(C) = \sqrt{3} \): \[ \frac{C}{\sqrt{C^2 - 4}} = \sqrt{3} \]
Step 3: Solve the equation
Cross-multiply: \[ C = \sqrt{3} \cdot \sqrt{C^2 - 4} \Rightarrow C^2 = 3(C^2 - 4) \Rightarrow C^2 = 3C^2 - 12 \Rightarrow 2C^2 = 12 \Rightarrow C^2 = 6 \Rightarrow C = \sqrt{6} \quad (\text{since } C \in (2, 4)) \]
\( \boxed{\sqrt{6}} \)
If \(\sec \theta + \tan \theta = 2 + \sqrt{3}\), then \(\sec \theta - \tan \theta\) is:
The general solution of the differential equation \[ (x + y)y \,dx + (y - x)x \,dy = 0 \] is:
Find the area of the region (in square units) enclosed by the curves: \[ y^2 = 8(x+2), \quad y^2 = 4(1-x) \] and the Y-axis.
Evaluate the integral: \[ I = \int_{-3}^{3} |2 - x| dx. \]