Step 1: Expressing the given function
We rewrite: \[ f(x) = \sin x + \frac{1 - \tan^2 x}{1 + \tan^2 x}. \] Using the identity: \[ \frac{1 - \tan^2 x}{1 + \tan^2 x} = \cos 2x, \] we obtain: \[ f(x) = \sin x + \cos 2x. \] Step 2: Finding the critical points
Differentiate \( f(x) \): \[ f'(x) = \cos x - 2 \sin 2x. \] Setting \( f'(x) = 0 \): \[ \cos x - 2 \sin 2x = 0. \] \[ \cos x = 2 \sin 2x. \] Using \( \sin 2x = 2 \sin x \cos x \), we substitute: \[ \cos x = 2 (2 \sin x \cos x). \] \[ \cos x = 4 \sin x \cos x. \] Dividing by \( \cos x \) (except when \( \cos x = 0 \)): \[ 1 = 4 \sin x. \] \[ \sin x = \frac{1}{4}. \] Solving for \( x \) in \( [0, 2\pi] \): \[ x = \sin^{-1} \left(\frac{1}{4}\right) \quad {or} \quad x = \pi - \sin^{-1} \left(\frac{1}{4}\right). \] These give two values in \( [0,2\pi] \).
Step 3: Verifying maximum values We check \( f''(x) \) or use the first derivative test. It turns out that \( f(x) \) attains a maximum at these two points.
Step 4: Conclusion Thus, the number of values of \( x \) where \( f(x) \) attains its maximum is: \[ 2. \]
To solve for the number of \( x \) values where the function f(x) achieves its maximum within the interval \( [0, 2\pi] \), we first simplify the expression for f(x):
f(x) is given by:
\[ f(x) = \sin x + \frac{1 - \tan^2 x}{1 + \tan^2 x} \]
Note that the expression \(\frac{1 - \tan^2 x}{1 + \tan^2 x}\) simplifies to \(\cos 2x\) because of the double angle identity:
\[\cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x}\]
Thus, the function simplifies to:
\[ f(x) = \sin x + \cos 2x \]
Find maximum value:
To find the maximum value of \(f(x)\), we first find the derivative \(f'(x)\) and then set it to zero to find critical points:
\[ f'(x) = \cos x - 2\sin 2x \]
Using the identity \(\sin 2x = 2\sin x \cos x\), the derivative becomes:
\[ f'(x) = \cos x - 4\sin x \cos x \]
\[ = \cos x(1 - 4\sin x) \]
Setting \(f'(x) = 0\):
\[ \cos x(1 - 4\sin x) = 0 \]
This gives us two cases:
1. \(\cos x = 0\) leading to \(x = \frac{\pi}{2}, \frac{3\pi}{2}\)
2. \(1 - 4\sin x = 0\) leading to \(\sin x = \frac{1}{4}\)
For \(\sin x = \frac{1}{4}\), \(x = \arcsin\left(\frac{1}{4}\right)\) which are within \( [0, 2\pi] \):
These two solutions are approximately:
\[ x_1 = \arcsin\left(\frac{1}{4}\right)\quad \text{and}\quad x_2 = \pi - \arcsin\left(\frac{1}{4}\right) \]
The function values at these points are evaluated to determine the maximum:
\[ f(x_1) = \sin(\arcsin\left(\frac{1}{4}\right)) + \cos(2\arcsin\left(\frac{1}{4}\right)) \]
\[ f(x_2) = \sin(\pi - \arcsin\left(\frac{1}{4}\right)) + \cos(2(\pi - \arcsin\left(\frac{1}{4}\right))) \]
Solving these and checking boundary points \(x=0\) and \(x=2\pi\) yield no larger values than at \(x_1\) and \(x_2\). Thus, there are only two points where f(x) achieves its maximum within \([0, 2\pi]\). Therefore, the number of such \(x\) values is \(2\).
If the function f(x) = \(\sqrt{x^2 - 4}\) satisfies the Lagrange’s Mean Value Theorem on \([2, 4]\), then the value of \( C \) is}
If \(\sec \theta + \tan \theta = 2 + \sqrt{3}\), then \(\sec \theta - \tan \theta\) is: