If the function
\[ f(x) = \begin{cases} \frac{(e^x - 1) \sin kx}{4 \tan x}, & x \neq 0 \\ P, & x = 0 \end{cases} \]
is differentiable at \( x = 0 \), then:
\( P = k, f'(0) = \frac{1}{4} \)
Step 1: Check continuity at \( x = 0 \)
For \( f(x) \) to be continuous at \( x = 0 \), we must have: \[ \lim_{x \to 0} f(x) = f(0). \] Since \( f(0) = P \), we evaluate: \[ \lim_{x \to 0} \frac{(e^x - 1) \sin kx}{4 \tan x}. \] Using the approximations: \[ e^x - 1 \approx x, \quad \sin kx \approx kx, \quad \tan x \approx x. \] Substituting, \[ \frac{(x) (kx)}{4x}. \] \[ = \frac{kx^2}{4x}. \] \[ = \frac{kx}{4}. \] Taking the limit as \( x \to 0 \), \[ \lim_{x \to 0} f(x) = 0. \] Thus, for continuity, \[ P = 0. \]
Step 2: Compute the derivative at \( x = 0 \)
The derivative at \( x = 0 \) is given by: \[ f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x}. \] \[ = \lim_{x \to 0} \frac{\frac{(e^x - 1) \sin kx}{4 \tan x} - 0}{x}. \] \[ = \lim_{x \to 0} \frac{(e^x - 1) \sin kx}{4 x \tan x}. \] Using the same approximations: \[ = \lim_{x \to 0} \frac{x kx}{4x x}. \] \[ = \lim_{x \to 0} \frac{kx}{4x}. \] \[ = \frac{k}{4} \lim_{x \to 0} x. \] Since \( \lim_{x \to 0} x = 0 \), we apply L'Hôpital's Rule to: \[ \lim_{x \to 0} \frac{kx}{4x}. \] Differentiating numerator and denominator: \[ \lim_{x \to 0} \frac{k}{4} = \frac{k^2}{4}. \]
Step 3: Conclusion
Thus, the correct answer is: \[ \mathbf{P = 0, f'(0) = \frac{k^2}{4}.} \]
For \( \alpha, \beta, \gamma \in \mathbb{R} \), if \[ \lim_{x \to 0} \frac{x^2 \sin(\alpha x) + (\gamma - 1)e^{x^2}}{\sin(2x - \beta x)} = 3, \] then \( \beta + \gamma - \alpha \) is equal to:
If $\lim_{x \to 1} \frac{(x-1)(6+\lambda \cos(x-1)) + \mu \sin(1-x)}{(x-1)^3} = -1$, where $\lambda, \mu \in \mathbb{R}$, then $\lambda + \mu$ is equal to
In a messenger RNA molecule, untranslated regions (UTRs) are present at:
I. 5' end before start codon
II. 3' end after stop codon
III. 3' end before stop codon
IV. 5' end after start codon