Concept: For a quadratic equation \(Ax^2 + Bx + C = 0\), the roots are equal if and only if its discriminant (\(D\)) is equal to zero. The discriminant is given by \(D = B^2 - 4AC\).
Step 1: Identify A, B, and C from the given quadratic equation
The given equation is \( (a^2+b^2)x^2 - 2(ac+bd)x + (c^2+d^2) = 0 \).
Comparing with \(Ax^2 + Bx + C = 0\):
\(A = a^2+b^2\)
\(B = -2(ac+bd)\)
\(C = c^2+d^2\)
Step 2: Set the discriminant \(D = B^2 - 4AC\) to zero
Since the equation has equal roots, \(D=0\).
\[ [-2(ac+bd)]^2 - 4(a^2+b^2)(c^2+d^2) = 0 \]
Step 3: Expand and simplify the equation
\[ 4(ac+bd)^2 - 4(a^2+b^2)(c^2+d^2) = 0 \]
Divide the entire equation by 4:
\[ (ac+bd)^2 - (a^2+b^2)(c^2+d^2) = 0 \]
Expand \((ac+bd)^2\):
\( (ac+bd)^2 = (ac)^2 + (bd)^2 + 2(ac)(bd) = a^2c^2 + b^2d^2 + 2abcd \)
Expand \((a^2+b^2)(c^2+d^2)\):
\( (a^2+b^2)(c^2+d^2) = a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2 \)
Now substitute these back into the equation:
\[ (a^2c^2 + b^2d^2 + 2abcd) - (a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2) = 0 \]
\[ a^2c^2 + b^2d^2 + 2abcd - a^2c^2 - a^2d^2 - b^2c^2 - b^2d^2 = 0 \]
Cancel out terms: \(a^2c^2\) cancels with \(-a^2c^2\), and \(b^2d^2\) cancels with \(-b^2d^2\).
We are left with:
\[ 2abcd - a^2d^2 - b^2c^2 = 0 \]
Multiply by -1 to make the squared terms positive (optional, but helps in recognizing a pattern):
\[ a^2d^2 + b^2c^2 - 2abcd = 0 \]
Step 4: Factor the resulting expression
The expression \(a^2d^2 - 2abcd + b^2c^2\) is a perfect square trinomial.
It can be written as \((ad)^2 - 2(ad)(bc) + (bc)^2\).
This is of the form \((X-Y)^2 = X^2 - 2XY + Y^2\), where \(X=ad\) and \(Y=bc\).
So, \((ad - bc)^2 = 0\).
Step 5: Solve for the condition
If \((ad - bc)^2 = 0\), then taking the square root of both sides gives:
\[ ad - bc = 0 \]
\[ ad = bc \]
This is the condition for equal roots.