We need all natural numbers \(n \in [20,100]\) such that the quadratic \(x^2+4x-n=0\) has integral roots.
For \(ax^2+bx+c=0\) to have integer roots, the discriminant must be a perfect square. Here,
\[ D=b^2-4ac=16+4n=4(4+n). \]
Also the roots are \(x=\dfrac{-4\pm\sqrt{D}}{2}=-2\pm\sqrt{4+n}\).
Step 1: Require \(\sqrt{4+n}\in\mathbb{Z}\). Let \(4+n=k^2\) for some integer \(k\ge 1\). Then
\[ n=k^2-4. \]
Step 2: Impose the range \(20\le n\le 100\):
\[ 20\le k^2-4\le 100 \;\Longrightarrow\; 24\le k^2\le 104. \] \[ k=5,6,7,8,9,10 \quad (\text{since }4^2=16<24,\;11^2=121>104). \]
Step 3: Corresponding \(n\)-values:
\[ n=25-4=21,\;36-4=32,\;49-4=45,\;64-4=60,\;81-4=77,\;100-4=96. \]
There are 6 distinct values of \(n\) in \([20,100]\) for which the equation has integral roots.
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.