1. Rewrite the equation:
\[
x^2 + 4x + 4 = n + 4
\]
\[
(x + 2)^2 = n + 4
\]
2. Solve for $x$:
\[
x = -2 \pm \sqrt{n + 4}
\]
3. Determine the range of $n$:
\[
20 \leq n \leq 100
\]
\[
\sqrt{24} \leq \sqrt{n + 4} \leq \sqrt{104}
\]
\[
4.9 \leq \sqrt{n + 4} \leq 10.2
\]
4. Find the integer values of $\sqrt{n + 4}$:
\[
\sqrt{n + 4} \in \{5, 6, 7, 8, 9, 10\}
\]
5. Calculate the number of distinct values of $n$:
\[
\text{Number of distinct values} = 6
\]
Therefore, the correct answer is (3) 6.