In the given figure, the numbers associated with the rectangle, triangle, and ellipse are 1, 2, and 3, respectively. Which one among the given options is the most appropriate combination of \( P \), \( Q \), and \( R \)?
Consider a directed graph \( G = (V,E) \), where \( V = \{0,1,2,\dots,100\} \) and
\[ E = \{(i,j) : 0 < j - i \leq 2, \text{ for all } i,j \in V \}. \] Suppose the adjacency list of each vertex is in decreasing order of vertex number, and depth-first search (DFS) is performed at vertex 0. The number of vertices that will be discovered after vertex 50 is:
Create empty stack S Set x = 0, flag = 0, sum = 0 Push x onto S while (S is not empty){ if (flag equals 0){ Set x = x + 1 Push x onto S } if (x equals 8): Set flag = 1 if (flag equals 1){ x = Pop(S) if (x is odd): Pop(S) Set sum = sum + x } } Output sumThe value of \( sum \) output by a program executing the above pseudocode is:
def f(a, b): if (a == 0): return b if (a % 2 == 1): return 2 * f((a - 1) / 2, b) return b + f(a - 1, b) print(f(15, 10))The value printed by the code snippet is 160 (Answer in integer).
Consider the following tables, Loan and Borrower, of a bank.
Query: \[ \pi_{\text{branch\_name}, \text{customer\_name}} (\text{Loan} \bowtie \text{Borrower}) \div \pi_{\text{branch\_name}}(\text{Loan}) \] where \( \bowtie \) denotes natural join. The number of tuples returned by the above relational algebra query is 1 (Answer in integer).