Step 1: Formula for Latus Rectum
For a hyperbola, the length of the latus rectum is given by:
\[
\frac{2b^2}{a}.
\]
We are given:
\[
\frac{2b^2}{a} = \frac{10}{3}.
\]
Step 2: Using the Eccentricity Formula
The eccentricity of a hyperbola is given by:
\[
e = \frac{c}{a}.
\]
We are given:
\[
e = \frac{\sqrt{13}}{3}.
\]
From the standard hyperbola relation:
\[
c^2 = a^2 + b^2.
\]
Step 3: Expressing \( c \) and \( b^2 \)
From \( e = \frac{c}{a} \), we express \( c \) as:
\[
c = \frac{\sqrt{13}}{3} a.
\]
Rearrange the standard relation:
\[
\left(\frac{\sqrt{13}}{3} a\right)^2 = a^2 + b^2.
\]
Expanding:
\[
\frac{13}{9} a^2 = a^2 + b^2.
\]
Rearrange:
\[
b^2 = \frac{4}{9} a^2.
\]
Step 4: Solving for \( a \)
Using the latus rectum equation:
\[
\frac{2b^2}{a} = \frac{10}{3}.
\]
Substituting \( b^2 = \frac{4}{9} a^2 \):
\[
\frac{2 \times \frac{4}{9} a^2}{a} = \frac{10}{3}.
\]
Simplify:
\[
\frac{8}{9} a = \frac{10}{3}.
\]
Solving for \( a \):
\[
a = \frac{10}{3} \times \frac{9}{8} = \frac{90}{24} = \frac{15}{4}.
\]
Step 5: Finding Transverse Axis Length
The transverse axis length is:
\[
2a = 2 \times \frac{15}{4} = \frac{30}{4} = \frac{15}{2}.
\]
Thus, the correct answer is \( \frac{15}{2} \), which matches option (C).