Given: The function is
\(\cos^{-1}\left(\frac{2x-5}{11x-7}\right) + \sin^{-1}(2x^2 - 3x + 1)\)
Domain of the function is: \( [0, a] \cup \left[ \frac{12}{13}, b \right] \), where we need to find the value of \( \dfrac{1}{ab} \).
The domain of the function \( \cos^{-1}(y) \) is \( y \in [-1, 1] \). In the given function, we have:
\(\frac{2x-5}{11x-7}.\)
For this expression to lie in the domain of \( \cos^{-1} \), we must have:
\(-1 \leq \frac{2x-5}{11x-7} \leq 1.\)
We will solve both inequalities: First Inequality:
\(\frac{2x-5}{11x-7} \geq -1 \quad \Rightarrow \quad 2x - 5 \geq -11x + 7 \quad \Rightarrow \quad 13x \geq 12 \quad \Rightarrow \quad x \geq \frac{12}{13}.\)
Second Inequality:
\(\frac{2x-5}{11x-7} \leq 1 \quad \Rightarrow \quad 2x - 5 \leq 11x - 7 \quad \Rightarrow \quad -9x \leq -2 \quad \Rightarrow \quad x \geq \frac{2}{9}.\)
Thus, the values of \(x\) must satisfy:
\(x \in \left[\frac{12}{13}, \infty\right).\)
The domain of the function \( \sin^{-1}(y) \) is \( y \in [-1, 1] \). For the given function, we have:
\(2x^2 - 3x + 1.\)
To find the domain, we require:
\(-1 \leq 2x^2 - 3x + 1 \leq 1.\)
Solving these two inequalities: First Inequality:
\(2x^2 - 3x + 1 \geq -1 \quad \Rightarrow \quad 2x^2 - 3x + 2 \geq 0.\)
Solving the quadratic inequality: \[ \Delta = (-3)^2 - 4 \cdot 2 \cdot 2 = 9 - 16 = -7. \] Since the discriminant is negative, this inequality holds for all real values of \(x\). Second Inequality: \( 2x^2 - 3x + 1 \leq 1 \quad \Rightarrow \quad 2x^2 - 3x \leq 0 \quad \Rightarrow \quad x(2x - 3) \leq 0. \) Solving this inequality: \[ x \in \left[0, \frac{3}{2}\right]. \]
To find the domain of the entire function, we need the intersection of the two domains: \[ \left[\frac{12}{13}, \infty\right) \quad \text{and} \quad \left[0, \frac{3}{2}\right]. \] The intersection is: \[ \left[\frac{12}{13}, \frac{3}{2}\right]. \] So, we have \( a = \frac{3}{2} \) and \( b = \frac{3}{2} \).
Now, we compute \( \dfrac{1}{ab} \): \[ \dfrac{1}{ab} = \dfrac{1}{\left( \frac{3}{2} \right) \cdot \left( \frac{12}{13} \right)} = \boxed{3}. \]
The value of $\int_{-1}^{1} \frac{(1 + \sqrt{|x| - x})e^x + (\sqrt{|x| - x})e^{-x}}{e^x + e^{-x}} \, dx$ is equal to

