Step 1: Apply condition for $\sin^{-1}$.
For $\sin^{-1}(y)$ to be defined,
\[
-1 \le y \le 1
\]
So,
\[
-1 \le \frac{1}{x^2-2x-2} \le 1
\]
Step 2: Solve the inequality.
This gives two inequalities:
\[
\frac{1}{x^2-2x-2} \le 1 \quad \text{and} \quad \frac{1}{x^2-2x-2} \ge -1
\]
Solving, we obtain critical points
\[
x = 1-\sqrt{3},\ 1,\ 1+\sqrt{3}
\]
Step 3: Determine valid intervals.
The domain becomes
\[
(-\infty,1-\sqrt{3}) \cup [1,1] \cup [1+\sqrt{3},\infty)
\]
Thus,
\[
\alpha=1-\sqrt{3},\ \beta=1,\ \gamma=1,\ \delta=1+\sqrt{3}
\]
Step 4: Find the required sum.
\[
\alpha+\beta+\gamma+\delta=(1-\sqrt{3})+1+1+(1+\sqrt{3})=5
\]