Step 1: Use condition for inverse sine.
For $\sin^{-1}(x)$ to be defined,
\[
-1\le x\le 1
\]
So,
\[
-1\le \frac{1}{x^2-2x-2}\le 1
\]
Step 2: Solve the inequalities.
\[
|x^2-2x-2|\ge 1
\]
Step 3: Solve $x^2-2x-2=1$ and $x^2-2x-2=-1$.
\[
x^2-2x-3=0 \Rightarrow x=3,-1
\]
\[
x^2-2x-1=0 \Rightarrow x=1\pm\sqrt{2}
\]
Step 4: Write the domain.
\[
(-\infty,-1]\cup[1-\sqrt2,\,1+\sqrt2]\cup[3,\infty)
\]
Step 5: Identify values.
\[
\alpha=-1,\quad \beta=1-\sqrt2,\quad \gamma=1+\sqrt2,\quad \delta=3
\]
Step 6: Final calculation.
\[
\alpha+\beta+\gamma+\delta=-1+(1-\sqrt2)+(1+\sqrt2)+3=4
\]
Final conclusion.
The required value is 4.