We are given
\[
\tan^{-1}(4x) + \tan^{-1}(6x) = \frac{\pi}{6}.
\]
Step 1: Check applicability of the inverse tangent addition formula.
The identity
\[
\tan^{-1} a + \tan^{-1} b = \tan^{-1}\!\left(\frac{a+b}{1-ab}\right)
\]
is valid when \( ab<1 \).
Here,
\[
ab = (4x)(6x) = 24x^2.
\]
Given
\[
-\frac{1}{2\sqrt{6}}<x<\frac{1}{2\sqrt{6}},
\]
we have
\[
24x^2<1.
\]
Hence, the formula is applicable.
Step 2: Apply the identity.
Using the formula,
\[
\tan^{-1}(4x) + \tan^{-1}(6x)
= \tan^{-1}\!\left(\frac{4x+6x}{1-24x^2}\right)
= \tan^{-1}\!\left(\frac{10x}{1-24x^2}\right).
\]
Thus,
\[
\tan^{-1}\!\left(\frac{10x}{1-24x^2}\right) = \frac{\pi}{6}.
\]
Step 3: Take tangent on both sides.
\[
\frac{10x}{1-24x^2} = \tan\!\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}}.
\]
Multiplying both sides by \( \sqrt{3}(1-24x^2) \),
\[
10\sqrt{3}x = 1 - 24x^2.
\]
Rearranging,
\[
24x^2 + 10\sqrt{3}x - 1 = 0.
\]
Step 4: Solve the quadratic equation.
The discriminant is
\[
D = (10\sqrt{3})^2 + 96 = 300 + 96 = 396 = 36 \times 11.
\]
Hence,
\[
x = \frac{-10\sqrt{3} \pm 6\sqrt{11}}{48}.
\]
Step 5: Check solutions in the given interval.
On checking both roots against
\[
-\frac{1}{2\sqrt{6}}<x<\frac{1}{2\sqrt{6}},
\]
we find that **only one root** satisfies the given condition.
Therefore, the number of solutions is \(1\).
Final Answer:
\[
\boxed{1}
\]