Let the hyperbola H be \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \).
Let its eccentricity be \(e\).
Distance between foci = \( 2ae \).
Given \( 2ae = 26 \implies ae = 13 \cdots (1) \).
Distance between directrices = \( \frac{2a}{e} \).
Given \( \frac{2a}{e} = \frac{50}{13} \implies \frac{a}{e} = \frac{25}{13} \cdots (2) \).
Multiply (1) and (2):
\( (ae) \left(\frac{a}{e}\right) = 13 \times \frac{25}{13} \)
\[ a^2 = 25 \implies a=5 \]
Substitute \(a=5\) into (1):
\( 5e = 13 \implies e = \frac{13}{5} \).
For a hyperbola, \( e>1 \).
\( 13/5 = 2.
6>1 \), so this is valid.
Now find \(b^2\) using \( b^2 = a^2(e^2-1) \).
\[ b^2 = 25 \left( \left(\frac{13}{5}\right)^2 - 1 \right) = 25 \left( \frac{169}{25} - 1 \right) = 25 \left( \frac{169-25}{25} \right) = 25 \left( \frac{144}{25} \right) = 144 \]
So \(b=12\).
The hyperbola H is \( \frac{x^2}{25} - \frac{y^2}{144} = 1 \).
Let \( e' \) be the eccentricity of the conjugate hyperbola.
The conjugate hyperbola is \( \frac{y^2}{b^2} - \frac{x^2}{a^2} = 1 \).
Its eccentricity \( e' \) satisfies \( a^2 = b^2((e')^2-1) \) (roles of a and b are swapped for the formula \(b^2=a^2(e^2-1)\)).
So, \( (e')^2 = 1 + \frac{a^2}{b^2} \).
\[ (e')^2 = 1 + \frac{25}{144} = \frac{144+25}{144} = \frac{169}{144} \]
\[ e' = \sqrt{\frac{169}{144}} = \frac{13}{12} \]
Alternatively, the relation between eccentricities of a hyperbola and its conjugate is \( \frac{1}{e^2} + \frac{1}{(e')^2} = 1 \).
\[ \frac{1}{(13/5)^2} + \frac{1}{(e')^2} = 1 \]
\[ \frac{25}{169} + \frac{1}{(e')^2} = 1 \]
\[ \frac{1}{(e')^2} = 1 - \frac{25}{169} = \frac{169-25}{169} = \frac{144}{169} \]
\[ (e')^2 = \frac{169}{144} \implies e' = \frac{13}{12} \]
This matches option (1).