Step 1: Use the condition for direction cosines.
The direction cosines of a line \( l \) are given by \( \frac{l_x}{|l|}, \frac{l_y}{|l|}, \frac{l_z}{|l|} \). For the line, we are given \( \frac{1}{c}, \frac{1}{c}, \frac{1}{c} \). According to the condition:
\[
\left( \frac{1}{c} \right)^2 + \left( \frac{1}{c} \right)^2 + \left( \frac{1}{c} \right)^2 = 1
\]
Step 2: Solve for \( c \).
Simplifying the equation:
\[
\frac{3}{c^2} = 1 \quad \Rightarrow \quad c^2 = 3 \quad \Rightarrow \quad c = \pm \sqrt{3}
\]
Step 3: Conclusion.
The correct answer is (C) \( c = \pm \sqrt{3} \).