We know that for a complex number to lie on the line \( y = x \), the real part and the imaginary part of the complex number must be equal. Let the complex number \( z \) be: \[ z = \frac{2 + i}{\lambda + i} \] Multiply both the numerator and denominator by the conjugate of the denominator: \[ z = \frac{(2 + i)(\lambda - i)}{(\lambda + i)(\lambda - i)} = \frac{2\lambda + 1 + i(\lambda - 2)}{\lambda^2 + 1} \]
Thus, the real part is \( \frac{2\lambda + 1}{\lambda^2 + 1} \) and the imaginary part is \( \frac{\lambda - 2}{\lambda^2 + 1} \).
For the complex number to lie on the line \( y = x \), the real part and imaginary part must be equal: \[ \frac{2\lambda + 1}{\lambda^2 + 1} = \frac{\lambda - 2}{\lambda^2 + 1} \] Cancel the denominator: \[ 2\lambda + 1 = \lambda - 2 \] Solve for \( \lambda \): \[ \lambda = -3 \] Thus, the value of \( \lambda \) is \( \boxed{-3} \).
If \( \text{Re} \left( \frac{2z + i}{z + i} \right) + \text{Re} \left( \frac{2z - i}{z - i} \right) = 2 \) is a circle of radius \( r \) and centre \( (a, b) \), then \( \frac{15ab}{r^2} \) is equal to:
Let \( I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\tan^2 x}{1+5^x} \, dx \). Then: