The area of the region is given by the integral over the specified region:
\[
\text{Area} = \int_{-1}^{1} \left( a + e^{|x|} - e^{-x} \right) \, dx.
\]
We can split the integral into two parts based on the absolute value function \( e^{|x|} \). For \( x \geq 0 \), \( e^{|x|} = e^x \), and for \( x <0 \), \( e^{|x|} = e^{-x} \).
Thus, the area becomes:
\[
\text{Area} = \int_{-1}^{0} \left( a + e^{-x} - e^{-x} \right) \, dx + \int_{0}^{1} \left( a + e^{x} - e^{-x} \right) \, dx.
\]
Simplifying each integral, we get:
\[
\text{Area} = \int_{-1}^{0} a \, dx + \int_{0}^{1} a \, dx + \int_{0}^{1} e^x \, dx - \int_{0}^{1} e^{-x} \, dx.
\]
The first two integrals are straightforward:
\[
\int_{-1}^{0} a \, dx = a, \quad \int_{0}^{1} a \, dx = a.
\]
Now we calculate the exponential integrals:
\[
\int_{0}^{1} e^x \, dx = e - 1, \quad \int_{0}^{1} e^{-x} \, dx = 1 - \frac{1}{e}.
\]
Thus, the area is:
\[
\text{Area} = 2a + (e - 1) - (1 - \frac{1}{e}).
\]
Simplifying this expression:
\[
\text{Area} = 2a + e - 1 - 1 + \frac{1}{e} = 2a + e - 2 + \frac{1}{e}.
\]
We are given that the area is \( \frac{e^2 + 8e + 1}{e} \). Equating this with the expression for the area, we get:
\[
2a + e - 2 + \frac{1}{e} = \frac{e^2 + 8e + 1}{e}.
\]
Multiplying both sides by \( e \) to eliminate the denominator:
\[
e(2a + e - 2 + \frac{1}{e}) = e^2 + 8e + 1,
\]
\[
e(2a) + e^2 - 2e + 1 = e^2 + 8e + 1.
\]
Simplifying:
\[
2ae + e^2 - 2e + 1 = e^2 + 8e + 1.
\]
Canceling out \( e^2 + 1 \) from both sides:
\[
2ae - 2e = 8e.
\]
Factoring out \( e \):
\[
e(2a - 2) = 8e.
\]
Dividing both sides by \( e \):
\[
2a - 2 = 8.
\]
Solving for \( a \):
\[
2a = 10 \quad \Rightarrow \quad a = 5.
\]
Conclusion:
The correct answer is (4), as \( a = 5 \).