To determine the value of \(a\), we start by evaluating the area of the region given by the set:
\(\{(x, y) : -1 \leq x \leq 1, 0 \leq y \leq a + e^{|x|} - e^{-x}, a> 0\}\).
The area can be evaluated by integrating the top bounding curve within the specified limits of \(x\):
\(Area = \int_{-1}^{1} (a + e^{|x|} - e^{-x}) \, dx\)
First, split the integral at \(x = 0\) because of the absolute value function:
\(Area = \left(\int_{-1}^{0} (a + e^{-x} - e^{-x}) \, dx + \int_{0}^{1} (a + e^{x} - e^{-x}) \, dx\right)\)
Simplify the integrals:
1. For \(x \in [-1, 0]\), \(e^{|x|} = e^{-x}\), so:
\(\int_{-1}^{0} (a + e^{-x} - e^{-x}) \, dx = \int_{-1}^{0} a \, dx = a \cdot (0 - (-1)) = a\)
2. For \(x \in [0, 1]\), \(e^{|x|} = e^{x}\), so:
\(\int_{0}^{1} (a + e^{x} - e^{-x}) \, dx = \int_{0}^{1} (a + e^{x} - e^{-x}) \, dx = a + [e^{x} - e^{-x}]_{0}^{1}\)
Evaluating the above expression:
\([e^{x} - e^{-x}]_{0}^{1} = (e - \frac{1}{e}) - (1 - 1) = e - \frac{1}{e}\)
Area from \(x = 0\) to \(x = 1\) is \(a + e - \frac{1}{e}\).
Total Area = \(a + a + e - \frac{1}{e} = 2a + e - \frac{1}{e}\)
We know that the total area is given as \(\frac{e^2 + 8e + 1}{e}\). Therefore,
\(2a + e - \frac{1}{e} = \frac{e^2 + 8e + 1}{e}\)
Solving for \(a\), multiply both sides by \(e\):
\(2ae + e^2 - 1 = e^2 + 8e + 1\)
Cancel terms and rearrange:
\(2ae = 8e + 2\)
\(2ae = 8e + 2e\)
\(a = \frac{8e + 2}{2e} = 5\)
The value of \(a\) is 5.

Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.