5
2
Given:
\(\tan A + \cot A = 2\)
We need to find the value of \(\tan^2 A + \cot^2 A\).
First, recall that \(\cot A = \frac{1}{\tan A}\). Substitute in the given equation:
\(\tan A + \frac{1}{\tan A} = 2\)
Let \(x = \tan A\). Then we have:
\(x + \frac{1}{x} = 2\)
Multiply through by \(x\) to eliminate the fraction:
\(x^2 + 1 = 2x\)
Rearrange to form a quadratic equation:
\(x^2 - 2x + 1 = 0\)
Observe that this is a perfect square:
\((x-1)^2 = 0\)
Thus, \(x = 1\), which means \(\tan A = 1\).
Now, find \(\tan^2 A + \cot^2 A\):
\(\tan^2 A = 1^2 = 1\)
\(\cot A = \frac{1}{\tan A} = 1\), so \(\cot^2 A = 1^2 = 1\)
Therefore, \(\tan^2 A + \cot^2 A = 1 + 1 = 2\).
The value of \(\tan^2 A + \cot^2 A\) is 2.
Step 1: Let \( x = \tan A \), then \( \cot A = \frac{1}{x} \)
Given: \( x + \frac{1}{x} = 2 \)
Step 2: Square both sides.
\[ \left( x + \frac{1}{x} \right)^2 = 4 \Rightarrow x^2 + \frac{1}{x^2} + 2 = 4 \Rightarrow x^2 + \frac{1}{x^2} = 2 \]
Step 3: Recognize the expression.
Since \( \tan^2 A + \cot^2 A = x^2 + \frac{1}{x^2} \), the value is \( \boxed{2} \) \[ \left( x + \frac{1}{x} \right)^2 = x^2 + \frac{1}{x^2} + 2 = 4 \Rightarrow x^2 + \frac{1}{x^2} = 2 \]
\(\Rightarrow \boxed{\text{Correct Answer is (D) 2}} \)
Given that $\sin \theta + \cos \theta = x$, prove that $\sin^4 \theta + \cos^4 \theta = \dfrac{2 - (x^2 - 1)^2}{2}$.