Step 1: Given condition
\[
\tan 2A = 1
\]
Step 2: Recall standard tangent values
\[
\tan 45^\circ = 1
\]
Step 3: Equating angles
\[
2A = 45^\circ
\]
Step 4: Solve for $A$
\[
A = \frac{45^\circ}{2} = 22.5^\circ = 22\dfrac{1}{2}^\circ
\]
\[
\boxed{A = 22\dfrac{1}{2}^\circ}
\]
Find the unknown frequency if 24 is the median of the following frequency distribution:
\[\begin{array}{|c|c|c|c|c|c|} \hline \text{Class-interval} & 0-10 & 10-20 & 20-30 & 30-40 & 40-50 \\ \hline \text{Frequency} & 5 & 25 & 25 & \text{$p$} & 7 \\ \hline \end{array}\]
Two concentric circles are of radii $8\ \text{cm}$ and $5\ \text{cm}$. Find the length of the chord of the larger circle which touches (is tangent to) the smaller circle.