Step 1: Given condition
\[
\tan 2A = 1
\]
Step 2: Recall standard tangent values
\[
\tan 45^\circ = 1
\]
Step 3: Equating angles
\[
2A = 45^\circ
\]
Step 4: Solve for $A$
\[
A = \frac{45^\circ}{2} = 22.5^\circ = 22\dfrac{1}{2}^\circ
\]
\[
\boxed{A = 22\dfrac{1}{2}^\circ}
\]
The value of $\dfrac{1+\cot^2 \theta}{1+\tan^2 \theta}$ will be: