Step 1: Given condition
We are given $\sin \theta = \cos \theta$.
Step 2: Divide both sides by $\cos \theta$ (valid for $0^\circ \leq \theta \leq 90^\circ$, except $\theta=90^\circ$)
\[ \frac{\sin \theta}{\cos \theta} = \frac{\cos \theta}{\cos \theta} \] \[ \tan \theta = 1 \]
Step 3: Solve for $\theta$
\[ \tan \theta = 1 \,\Rightarrow\ \theta = 45^\circ \]
Step 4: Check interval
Since $0^\circ \leq \theta \leq 90^\circ$, the only solution is $\theta = 45^\circ$.
\[ \boxed{\theta = 45^\circ} \]
Find the unknown frequency if 24 is the median of the following frequency distribution:
\[\begin{array}{|c|c|c|c|c|c|} \hline \text{Class-interval} & 0-10 & 10-20 & 20-30 & 30-40 & 40-50 \\ \hline \text{Frequency} & 5 & 25 & 25 & \text{$p$} & 7 \\ \hline \end{array}\]
Two concentric circles are of radii $8\ \text{cm}$ and $5\ \text{cm}$. Find the length of the chord of the larger circle which touches (is tangent to) the smaller circle.