Given the series:
\[
\tan^{-1} \left( \frac{1}{1 + 1 \cdot 2} \right) + \tan^{-1} \left( \frac{1}{1 + n(n+1)} \right) = \tan^{-1}(x)
\]
We can simplify the terms as follows:
\[
\tan^{-1} \left( \frac{2 - 1}{1 + 1 \cdot 2} \right) + \tan^{-1} \left( \frac{3 - 2}{1 + 2 \cdot 3} \right) + \cdots
\]
Using the difference identity for inverse tangents:
\[
\tan^{-1}(A) - \tan^{-1}(B) = \tan^{-1}\left( \frac{A - B}{1 + AB} \right)
\]
After applying this identity for each pair, we simplify the entire expression to:
\[
\tan^{-1}(n+1) - \tan^{-1}(1) = \tan^{-1}(x)
\]
Thus, we find:
\[
\tan^{-1}(A) - \tan^{-1}(B) = \tan^{-1}\left( \frac{A - B}{1 + A \cdot B} \right)
\]
\[
\Rightarrow \tan^{-1} \left( \frac{n}{n+2} \right) = \tan^{-1}(x)
\]
Finally, we conclude that:
\[
x = \frac{n}{n + 2}
\]