If $t, t'$ are the ends of the focal chord of parabola $y^{2}= 4ax$, then its length $ = a\left(t'-t\right)^{2}$
But for a focal chord $tt' =-1$
$ \therefore t' = -\frac{1}{t}$
$\therefore$ reqd. length $= a\left(-\frac{1}{t} -t\right)^{2}$
$= a\left(t+\frac{1}{t}\right)^{2}$