\( \sqrt{3}\pi \)
We start with the given expression for the area:
\[ \text{Area} = \int_{0}^{\frac{3}{\sqrt{2}}} x \, dx + \int_{\frac{3}{\sqrt{2}}}^{3\sqrt{2}} \frac{\sqrt{18 - x^2}}{3} \, dx \]
Evaluating the first integral:
\[ \int_{0}^{\frac{3}{\sqrt{2}}} x \, dx = \frac{1}{2} \left( x^2 \right)_{0}^{\frac{3}{\sqrt{2}}} = \frac{1}{2} \left( \frac{9}{2} \right) = \frac{9}{4} \]
Now, for the second integral:
\[ \int_{\frac{3}{\sqrt{2}}}^{3\sqrt{2}} \frac{\sqrt{18 - x^2}}{3} \, dx = \frac{1}{3} \int_{\frac{3}{\sqrt{2}}}^{3\sqrt{2}} \sqrt{18 - x^2} \, dx \]
We know the standard integral formula:
\[ \int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1}\left(\frac{x}{a}\right) + C \]
Substituting \( a = 3\sqrt{2} \):
\[ \int_{\frac{3}{\sqrt{2}}}^{3\sqrt{2}} \sqrt{18 - x^2} \, dx = \left[ \frac{x}{2} \sqrt{18 - x^2} + 9 \sin^{-1}\left( \frac{x}{3\sqrt{2}} \right) \right]_{\frac{3}{\sqrt{2}}}^{3\sqrt{2}} \]
Thus,
\[ \text{Area} = \frac{1}{2}\left(\frac{9}{2}\right) + \frac{1}{\sqrt{3}} \left[ 9\sin^{-1}(1) - \frac{3}{2\sqrt{2}} \cdot 3\sqrt{3} - 9\sin^{-1}\left(\frac{1}{2}\right) \right] \]
Evaluating each term:
\[ \text{Area} = \frac{9}{4} + \frac{1}{\sqrt{3}}\left( \frac{9\pi}{2} - \frac{9\sqrt{3}}{4} - \frac{9\pi}{6} \right) \]
Simplifying further:
\[ \text{Area} = \sqrt{3}\pi \]
Final Answer:
\[ \boxed{\sqrt{3}\pi} \]
Given the equation of the ellipse: The given ellipse equation is:
\[ \frac{x^2}{18} + \frac{y^2}{6} = 1. \]
This is an ellipse centered at the origin with semi-major axis \(\sqrt{18} = 3\sqrt{2}\) along the \(x\)-axis and semi-minor axis \(\sqrt{6}\) along the \(y\)-axis.
The line \(y = x\) intersects the ellipse in the first quadrant. Substituting \(y = x\) into the ellipse equation:
\[ \frac{x^2}{18} + \frac{x^2}{6} = 1 \implies \frac{4x^2}{18} = 1 \implies x^2 = \frac{9}{2}. \]
Thus, the point of intersection is:
\[ \left( x, y \right) = \left( \frac{3}{\sqrt{2}}, \frac{3}{\sqrt{2}} \right). \]
Step 1: Area under the ellipse below \(y = x\)
The area of the elliptical segment in the first quadrant below the line \(y = x\) is given by:
\[ \int_{\frac{3}{\sqrt{2}}}^{3\sqrt{2}} \sqrt{\frac{18 - x^2}{3}} \, dx. \]
Substituting the limits and evaluating (from the given solution in the image):
\[ \frac{1}{\sqrt{3}} \left[ \frac{18 - x^2}{2} + \frac{18}{2} \sin^{-1} \left( \frac{x}{3\sqrt{2}} \right) \right]_{\frac{3}{\sqrt{2}}}^{3\sqrt{2}}. \]
This simplifies to:
\[ \frac{1}{\sqrt{3}} \left[ 9 \cdot \frac{\pi}{2} - \frac{3}{2\sqrt{2}} \cdot \sqrt{3\sqrt{2}} - 9 \cdot \frac{\pi}{6} \right]. \]
Step 2: Total Area Calculation
From the triangle and ellipse calculations, the required area is:
Required Area = \(\sqrt{3}\pi\).
So, Final Answer: \(\sqrt{3}\pi\)
If \( S \) and \( S' \) are the foci of the ellipse \[ \frac{x^2}{18} + \frac{y^2}{9} = 1 \] and \( P \) is a point on the ellipse, then \[ \min (SP \cdot S'P) + \max (SP \cdot S'P) \] is equal to:
Let one focus of the hyperbola \( H : \dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 1 \) be at \( (\sqrt{10}, 0) \) and the corresponding directrix be \( x = \dfrac{9}{\sqrt{10}} \). If \( e \) and \( l \) respectively are the eccentricity and the length of the latus rectum of \( H \), then \( 9 \left(e^2 + l \right) \) is equal to:
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 