To solve the problem, we first need to find the eccentricities of the given hyperbola and ellipse and then use their properties to calculate the length of the chord of the ellipse.
Hence, the length of the chord of the ellipse parallel to the x-axis and passing through (0, 2) is \(\frac{10\sqrt{5}}{3}\).
Given:
\(\frac{x^2}{16} + \frac{y^2}{9} = 1 \implies e_1 = \sqrt{1 - \frac{9}{16}} = \frac{5}{4}.\)
For the ellipse:
\(e_1 e_2 = 1 \implies e_2 = \frac{4}{5}.\)
The ellipse passes through \((\pm 5, 0)\), so \(a = 5\) and \(b = 3\):
\(\frac{x^2}{25} + \frac{y^2}{9} = 1.\)
The length of the chord parallel to the \(x\)-axis and passing through \((0, 2)\) is given by:
\(L = 2a \sqrt{1 - \frac{y^2}{b^2}} = 2 \times 5 \times \sqrt{1 - \frac{4}{9}} = 10 \sqrt{\frac{5}{9}} = \frac{10 \sqrt{5}}{3}.\)
The Correct answer is: \( \frac{10\sqrt{5}}{3} \)
If \( S \) and \( S' \) are the foci of the ellipse \[ \frac{x^2}{18} + \frac{y^2}{9} = 1 \] and \( P \) is a point on the ellipse, then \[ \min (SP \cdot S'P) + \max (SP \cdot S'P) \] is equal to:
Let one focus of the hyperbola \( H : \dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 1 \) be at \( (\sqrt{10}, 0) \) and the corresponding directrix be \( x = \dfrac{9}{\sqrt{10}} \). If \( e \) and \( l \) respectively are the eccentricity and the length of the latus rectum of \( H \), then \( 9 \left(e^2 + l \right) \) is equal to:
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of \( P_1 \) and \( P_2 \) are orthogonal to each other. The polarizer \( P_3 \) covers both the slits with its transmission axis at \( 45^\circ \) to those of \( P_1 \) and \( P_2 \). An unpolarized light of wavelength \( \lambda \) and intensity \( I_0 \) is incident on \( P_1 \) and \( P_2 \). The intensity at a point after \( P_3 \), where the path difference between the light waves from \( S_1 \) and \( S_2 \) is \( \frac{\lambda}{3} \), is:
