Given:
\(\frac{x^2}{16} + \frac{y^2}{9} = 1 \implies e_1 = \sqrt{1 - \frac{9}{16}} = \frac{5}{4}.\)
For the ellipse:
\(e_1 e_2 = 1 \implies e_2 = \frac{4}{5}.\)
The ellipse passes through \((\pm 5, 0)\), so \(a = 5\) and \(b = 3\):
\(\frac{x^2}{25} + \frac{y^2}{9} = 1.\)
The length of the chord parallel to the \(x\)-axis and passing through \((0, 2)\) is given by:
\(L = 2a \sqrt{1 - \frac{y^2}{b^2}} = 2 \times 5 \times \sqrt{1 - \frac{4}{9}} = 10 \sqrt{\frac{5}{9}} = \frac{10 \sqrt{5}}{3}.\)
The Correct answer is: \( \frac{10\sqrt{5}}{3} \)
If a tangent to the hyperbola \( x^2 - \frac{y^2}{3} = 1 \) is also a tangent to the parabola \( y^2 = 8x \), then the equation of such tangent with the positive slope is:
If a circle of radius 4 cm passes through the foci of the hyperbola \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \) and is concentric with the hyperbola, then the eccentricity of the conjugate hyperbola of that hyperbola is: