We are given \( \sqrt{-3 - 4i} = re^{i\theta} \).
Squaring both sides, we get:
$$-3 - 4i = (re^{i\theta})^2 = r^2 (e^{i\theta})^2 = r^2 e^{2i\theta}$$
Using Euler's formula, \( e^{2i\theta} = \cos(2\theta) + i \sin(2\theta) \).
So, \( -3 - 4i = r^2 (\cos(2\theta) + i \sin(2\theta)) = r^2 \cos(2\theta) + i r^2 \sin(2\theta) \).
Equating the real and imaginary parts, we have:
$$r^2 \cos(2\theta) = -3 \quad \cdots (1)$$
$$r^2 \sin(2\theta) = -4 \quad \cdots (2)$$
We need to find \( r^2 \tan \theta \).
We know that \( \tan \theta = \frac{\sin \theta}{\cos \theta} \).
We also know the double angle formulas for sine and cosine:
$$ \sin(2\theta) = 2 \sin \theta \cos \theta $$
$$ \cos(2\theta) = \cos^2 \theta - \sin^2 \theta $$
From equations (1) and (2), we can find \( r^2 \):
$$(r^2 \cos(2\theta))^2 + (r^2 \sin(2\theta))^2 = (-3)^2 + (-4)^2$$
$$r^4 (\cos^2(2\theta) + \sin^2(2\theta)) = 9 + 16$$
$$r^4 (1) = 25$$
$$r^4 = 25$$
Since \( r \) is the magnitude, \( r^2 = 5 \).
Now we have:
$$5 \cos(2\theta) = -3 \implies \cos(2\theta) = -\frac{3}{5}$$
$$5 \sin(2\theta) = -4 \implies \sin(2\theta) = -\frac{4}{5}$$
We want to find \( r^2 \tan \theta = 5 \tan \theta \).
We know that \( \tan(2\theta) = \frac{\sin(2\theta)}{\cos(2\theta)} = \frac{-4/5}{-3/5} = \frac{4}{3} \).
Also, \( \tan(2\theta) = \frac{2 \tan \theta}{1 - \tan^2 \theta} \).
Let \( t = \tan \theta \).
$$\frac{4}{3} = \frac{2t}{1 - t^2}$$
$$4(1 - t^2) = 3(2t)$$
$$4 - 4t^2 = 6t$$
$$4t^2 + 6t - 4 = 0$$
$$2t^2 + 3t - 2 = 0$$
We can solve this quadratic equation for \( t \):
$$t = \frac{-3 \pm \sqrt{3^2 - 4(2)(-2)}}{2(2)} = \frac{-3 \pm \sqrt{9 + 16}}{4} = \frac{-3 \pm \sqrt{25}}{4} = \frac{-3 \pm 5}{4}$$
So, \( t_1 = \frac{-3 + 5}{4} = \frac{2}{4} = \frac{1}{2} \) and \( t_2 = \frac{-3 - 5}{4} = \frac{-8}{4} = -2 \).
Since \( \cos(2\theta)<0 \) and \( \sin(2\theta)<0 \), \( 2\theta \) lies in the third quadrant.
In the third quadrant, \( \pi<2\theta<\frac{3\pi}{2} \), which implies \( \frac{\pi}{2}<\theta<\frac{3\pi}{4} \).
In this quadrant, \( \tan \theta \) is negative.
Therefore, \( \tan \theta = -2 \).
Finally, \( r^2 \tan \theta = 5 \times (-2) = -10 \).