Question:

If \( \sqrt{-3 - 4i} = re^{i\theta} \), then \( r^2 \tan \theta = \)

Show Hint

When dealing with square roots of complex numbers in polar form, squaring both sides helps to relate the magnitude and argument. Remember the double angle formulas for trigonometric functions when relating \( \theta \) and \( 2\theta \). Also, pay attention to the quadrant of the angle based on the signs of the real and imaginary parts.
Updated On: May 12, 2025
  • \( -5 \)
  • \( 5 \)
  • \( 10 \)
  • \( -10 \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

We are given \( \sqrt{-3 - 4i} = re^{i\theta} \).
Squaring both sides, we get: $$-3 - 4i = (re^{i\theta})^2 = r^2 (e^{i\theta})^2 = r^2 e^{2i\theta}$$ Using Euler's formula, \( e^{2i\theta} = \cos(2\theta) + i \sin(2\theta) \).
So, \( -3 - 4i = r^2 (\cos(2\theta) + i \sin(2\theta)) = r^2 \cos(2\theta) + i r^2 \sin(2\theta) \).
Equating the real and imaginary parts, we have: $$r^2 \cos(2\theta) = -3 \quad \cdots (1)$$ $$r^2 \sin(2\theta) = -4 \quad \cdots (2)$$ We need to find \( r^2 \tan \theta \).
We know that \( \tan \theta = \frac{\sin \theta}{\cos \theta} \).
We also know the double angle formulas for sine and cosine: $$ \sin(2\theta) = 2 \sin \theta \cos \theta $$ $$ \cos(2\theta) = \cos^2 \theta - \sin^2 \theta $$ From equations (1) and (2), we can find \( r^2 \): $$(r^2 \cos(2\theta))^2 + (r^2 \sin(2\theta))^2 = (-3)^2 + (-4)^2$$ $$r^4 (\cos^2(2\theta) + \sin^2(2\theta)) = 9 + 16$$ $$r^4 (1) = 25$$ $$r^4 = 25$$ Since \( r \) is the magnitude, \( r^2 = 5 \).
Now we have: $$5 \cos(2\theta) = -3 \implies \cos(2\theta) = -\frac{3}{5}$$ $$5 \sin(2\theta) = -4 \implies \sin(2\theta) = -\frac{4}{5}$$ We want to find \( r^2 \tan \theta = 5 \tan \theta \).
We know that \( \tan(2\theta) = \frac{\sin(2\theta)}{\cos(2\theta)} = \frac{-4/5}{-3/5} = \frac{4}{3} \).
Also, \( \tan(2\theta) = \frac{2 \tan \theta}{1 - \tan^2 \theta} \).
Let \( t = \tan \theta \).
$$\frac{4}{3} = \frac{2t}{1 - t^2}$$ $$4(1 - t^2) = 3(2t)$$ $$4 - 4t^2 = 6t$$ $$4t^2 + 6t - 4 = 0$$ $$2t^2 + 3t - 2 = 0$$ We can solve this quadratic equation for \( t \): $$t = \frac{-3 \pm \sqrt{3^2 - 4(2)(-2)}}{2(2)} = \frac{-3 \pm \sqrt{9 + 16}}{4} = \frac{-3 \pm \sqrt{25}}{4} = \frac{-3 \pm 5}{4}$$ So, \( t_1 = \frac{-3 + 5}{4} = \frac{2}{4} = \frac{1}{2} \) and \( t_2 = \frac{-3 - 5}{4} = \frac{-8}{4} = -2 \).
Since \( \cos(2\theta)<0 \) and \( \sin(2\theta)<0 \), \( 2\theta \) lies in the third quadrant.
In the third quadrant, \( \pi<2\theta<\frac{3\pi}{2} \), which implies \( \frac{\pi}{2}<\theta<\frac{3\pi}{4} \).
In this quadrant, \( \tan \theta \) is negative.
Therefore, \( \tan \theta = -2 \).
Finally, \( r^2 \tan \theta = 5 \times (-2) = -10 \).
Was this answer helpful?
0
0

Top Questions on complex numbers

View More Questions