Step 1: Simplify the inverse sine.
\[
\sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6}
\]
So,
\[
\tan^{-1}x = \frac{\pi}{6}
\]
Step 2: Apply tangent function.
Taking tangent on both sides:
\[
x = \tan\left(\frac{\pi}{6}\right)
\]
\[
x = \frac{1}{\sqrt{3}}
\]
Final Answer: \[ \boxed{\dfrac{1}{\sqrt{3}}} \]
The value of $\int_{-1}^{1} \frac{(1 + \sqrt{|x| - x})e^x + (\sqrt{|x| - x})e^{-x}}{e^x + e^{-x}} \, dx$ is equal to
Considering the principal values of the inverse trigonometric functions, $\sin^{-1} \left( \frac{\sqrt{3}}{2} x + \frac{1}{2} \sqrt{1-x^2} \right)$, $-\frac{1}{2}<x<\frac{1}{\sqrt{2}}$, is equal to