Given that \[ x = e^{i\alpha}, \quad y = e^{i\beta}, \quad z = e^{i\gamma}, \] and \[ x + y + z = 0, \] we want to evaluate \[ \cos(2\alpha - \beta - \gamma) + \cos(2\beta - \alpha - \gamma) + \cos(2\gamma - \alpha - \beta). \]
Step 1. Rewrite each cosine in exponential form. Recall that \[ \cos \theta = \operatorname{Re}\bigl(e^{i\theta}\bigr). \] Hence, \[ \cos(2\alpha - \beta - \gamma) = \operatorname{Re}\bigl(e^{i(2\alpha - \beta - \gamma)}\bigr). \] Similarly, \[ \cos(2\beta - \alpha - \gamma) = \operatorname{Re}\bigl(e^{i(2\beta - \alpha - \gamma)}\bigr), \] and \[ \cos(2\gamma - \alpha - \beta) = \operatorname{Re}\bigl(e^{i(2\gamma - \alpha - \beta)}\bigr). \] Thus the sum we want is \[ S = \operatorname{Re}\Bigl( e^{i(2\alpha - \beta - \gamma)} + e^{i(2\beta - \alpha - \gamma)} + e^{i(2\gamma - \alpha - \beta)} \Bigr). \] In terms of \(x, y, z\), notice that \[ e^{i(2\alpha - \beta - \gamma)} = \frac{x^2}{yz}, \quad e^{i(2\beta - \alpha - \gamma)} = \frac{y^2}{zx}, \quad e^{i(2\gamma - \alpha - \beta)} = \frac{z^2}{xy}. \] Hence \[ S = \operatorname{Re}\Bigl(\frac{x^2}{yz} + \frac{y^2}{zx} + \frac{z^2}{xy}\Bigr) = \operatorname{Re}\Bigl(\frac{x^3 + y^3 + z^3}{xyz}\Bigr). \]
Step 2. Use the identity when \(x + y + z = 0.\) A classical identity for any complex numbers \(x, y, z\) is \[ x^3 + y^3 + z^3 - 3xyz = (x + y + z)\bigl(x^2 + y^2 + z^2 - xy - yz - zx\bigr). \] Since we are given \(x + y + z = 0\), the right side vanishes, giving \[ x^3 + y^3 + z^3 = 3xyz. \] Thus, \[ \frac{x^3 + y^3 + z^3}{xyz} = \frac{3xyz}{xyz} = 3. \] Taking the real part does not change the value here, so \[ S = \operatorname{Re}\bigl(3\bigr) = 3. \]
Answer: \[ \cos(2\alpha - \beta - \gamma) + \cos(2\beta - \alpha - \gamma) + \cos(2\gamma - \alpha - \beta) = 3. \]
Let \(S=\left\{ z\in\mathbb{C}:\left|\frac{z-6i}{z-2i}\right|=1 \text{ and } \left|\frac{z-8+2i}{z+2i}\right|=\frac{3}{5} \right\}.\)
Then $\sum_{z\in S}|z|^2$ is equal to
Which of the following are ambident nucleophiles?
[A.] CN$^{\,-}$
[B.] CH$_{3}$COO$^{\,-}$
[C.] NO$_{2}^{\,-}$
[D.] CH$_{3}$O$^{\,-}$
[E.] NH$_{3}$
Identify the anomers from the following.

The standard Gibbs free energy change \( \Delta G^\circ \) of a cell reaction is \(-301 { kJ/mol}\). What is \( E^\circ \) in volts?
(Given: \( F = 96500 { C/mol}\), \( n = 2 \))