Step 1: Understanding the Concept:
A matrix is singular if its determinant is equal to zero. We are given three singular matrices P, Q, and R. We will use this property to find the values of the variables a, b, and c.
Step 2: Key Formula or Approach:
For a 2x2 matrix \(M = \begin{bmatrix} p & q
r & s \end{bmatrix}\), the determinant is given by \(|M| = ps - qr\).
If M is singular, then \(|M| = 0\), which implies \(ps - qr = 0\).
Step 3: Detailed Explanation:
For matrix P:
Given \(P = \begin{bmatrix} 2 & 3a
4 & 3 \end{bmatrix}\) is singular, so \(|P| = 0\).
\[ (2)(3) - (3a)(4) = 0 \]
\[ 6 - 12a = 0 \]
\[ 12a = 6 \]
\[ a = \frac{6}{12} = \frac{1}{2} \]
For matrix Q:
Given \(Q = \begin{bmatrix} b & 5
2a & 6 \end{bmatrix}\) is singular, so \(|Q| = 0\).
\[ (b)(6) - (5)(2a) = 0 \]
\[ 6b - 10a = 0 \]
Substitute the value of \(a = 1/2\):
\[ 6b - 10\left(\frac{1}{2}\right) = 0 \]
\[ 6b - 5 = 0 \]
\[ 6b = 5 \]
\[ b = \frac{5}{6} \]
For matrix R:
Given \(R = \begin{bmatrix} a^2 + b^2 - c & 1-c
c+1 & c \end{bmatrix}\) is singular, so \(|R| = 0\).
\[ (a^2 + b^2 - c)(c) - (1-c)(c+1) = 0 \]
\[ c(a^2 + b^2) - c^2 - (1 - c^2) = 0 \]
\[ c(a^2 + b^2) - c^2 - 1 + c^2 = 0 \]
\[ c(a^2 + b^2) - 1 = 0 \]
\[ c(a^2 + b^2) = 1 \]
Substitute the values of a and b:
\[ a^2 = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \]
\[ b^2 = \left(\frac{5}{6}\right)^2 = \frac{25}{36} \]
\[ c\left(\frac{1}{4} + \frac{25}{36}\right) = 1 \]
\[ c\left(\frac{9}{36} + \frac{25}{36}\right) = 1 \]
\[ c\left(\frac{34}{36}\right) = 1 \]
\[ c\left(\frac{17}{18}\right) = 1 \]
\[ c = \frac{18}{17} \]
Step 4: Final Answer:
We need to find the value of \((2a + 6b + 17c)\).
\[ 2a = 2\left(\frac{1}{2}\right) = 1 \]
\[ 6b = 6\left(\frac{5}{6}\right) = 5 \]
\[ 17c = 17\left(\frac{18}{17}\right) = 18 \]
\[ 2a + 6b + 17c = 1 + 5 + 18 = 24 \]
The value is 24.