To find the coordinates of \( C \), we proceed with the slopes of sides and the equations of lines.
1. Slope of \( AD \):
\[ \text{Slope of } AD = 3 \]
2. Slope of \( BC \):
\[ \text{Slope of } BC = -\frac{1}{3} \]
Equation of \( BC \):
\[ 3y + x - 17 = 0 \]
3. Slope of \( BE \):
\[ \text{Slope of } BE = 1 \]
4. Slope of \( AC \):
\[ \text{Slope of } AC = -1 \]
Equation of \( AC \):
\[ x + y - 3 = 0 \]
Solving these equations, we find:
\[ \text{Point } C \text{ is } (-4, 7) \]
Since \( C \) lies on the circle, we have:
\[ x^2 + y^2 - 65 = 0 \]
The problem involves finding the locus of point \(C(h, k)\) given that \(P(6, 1)\) is the orthocenter of triangle \(ABC\) with known vertices \(A(5, -2)\) and \(B(8, 3)\). The goal is to determine on which circle point \(C\) lies.
Thus, the correct answer is that the point \(C\) lies on the circle: \(x^2 + y^2 - 65 = 0\).
In the adjoining figure, \( AP = 1 \, \text{cm}, \ BP = 2 \, \text{cm}, \ AQ = 1.5 \, \text{cm}, \ AC = 4.5 \, \text{cm} \) Prove that \( \triangle APQ \sim \triangle ABC \).
Hence, find the length of \( PQ \), if \( BC = 3.6 \, \text{cm} \).
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 