The condition \( |Z - 1| \leq 2 \) means \( Z \) lies in a disk centered at 1 with radius 2.
Since \( \omega^3 = 1 \) and \( \omega \neq 1 \), \( \omega^3 - 1 = 0 \), which factors as:
\[ (\omega - 1)(\omega^2 + \omega + 1) = 0 \]
Since \( \omega \neq 1 \), \( \omega^2 + \omega + 1 = 0 \), so \( \omega^2 = -1 - \omega \).
Then,
\[ |\omega^2 Z - 1 - \omega| = |(-1 - \omega) Z - 1 - \omega| = |-(1 + \omega) Z - (1 + \omega)| = |1 + \omega| \cdot |Z + 1| = |Z + 1|. \]
By the Triangle Inequality,
\[ |Z + 1| = |Z - 1 + 2| \leq |Z - 1| + 2 \leq 2 + 2 = 4. \]
Equality occurs when \( Z = 3 \).
Also, by the Triangle Inequality,
\[ |Z + 1| = |Z - 1 + 2| \geq |2| - |Z - 1| \geq 2 - 2 = 0. \]
Equality occurs when \( Z = -1 \).
Hence, the set of possible values of \( a \) is:
\[ \boldsymbol{0 \leq a \leq 4.} \]
Let \(S=\left\{ z\in\mathbb{C}:\left|\frac{z-6i}{z-2i}\right|=1 \text{ and } \left|\frac{z-8+2i}{z+2i}\right|=\frac{3}{5} \right\}.\)
Then $\sum_{z\in S}|z|^2$ is equal to
Which of the following are ambident nucleophiles?
[A.] CN$^{\,-}$
[B.] CH$_{3}$COO$^{\,-}$
[C.] NO$_{2}^{\,-}$
[D.] CH$_{3}$O$^{\,-}$
[E.] NH$_{3}$
Identify the anomers from the following.

The standard Gibbs free energy change \( \Delta G^\circ \) of a cell reaction is \(-301 { kJ/mol}\). What is \( E^\circ \) in volts?
(Given: \( F = 96500 { C/mol}\), \( n = 2 \))