If \(n\) is an integer and \(Z = \cos \theta + i \sin \theta\), \(\theta \neq (2n + 1)\) \(\frac{\pi}{2}\), then: \(\frac{1 + Z^{2n}}{1 - Z^{2n}}\) = ?
If \( z \) is a complex number and \( k \in \mathbb{R} \), such that \( |z| = 1 \), \[ \frac{2 + k^2 z}{k + \overline{z}} = kz, \] then the maximum distance from \( k + i k^2 \) to the circle \( |z - (1 + 2i)| = 1 \) is: