If \(n\) is an integer and \(Z = \cos \theta + i \sin \theta\), \(\theta \neq (2n + 1)\) \(\frac{\pi}{2}\), then: \(\frac{1 + Z^{2n}}{1 - Z^{2n}}\) = ?
Let \( z \) satisfy \( |z| = 1, \ z = 1 - \overline{z} \text{ and } \operatorname{Im}(z)>0 \)
Then consider:
Statement-I: \( z \) is a real number
Statement-II: Principal argument of \( z \) is \( \dfrac{\pi}{3} \)
Then: