Question:

If \(n\) is an integer and \(Z = \cos \theta + i \sin \theta\)\(\theta \neq (2n + 1)\) \(\frac{\pi}{2}\), then: \(\frac{1 + Z^{2n}}{1 - Z^{2n}}\) = ?

Show Hint

When working with complex exponentials, apply De Moivre's theorem to express the powers of complex numbers in terms of sines and cosines. Use the conjugate to simplify the fraction.
Updated On: May 18, 2025
  • \( i \tan n\theta \)
  • \( i \cot n\theta \)
  • \( -i \tan n\theta \)
  • \( -i \cot n\theta \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Approach Solution - 1

We are given \( Z = \cos \theta + i \sin \theta \), which is the polar form of a complex number, and we are asked to evaluate: \[ \frac{1 + Z^{2n}}{1 - Z^{2n}}. \] Using De Moivre's theorem, we know: \[ Z^{2n} = \cos(2n\theta) + i \sin(2n\theta). \] Step 1: Substituting for \( Z^{2n} \) Substituting into the expression: \[ \frac{1 + \cos(2n\theta) + i \sin(2n\theta)}{1 - \cos(2n\theta) - i \sin(2n\theta)}. \] Step 2: Simplifying the expression Multiply the numerator and the denominator by the conjugate of the denominator: \[ \frac{(1 + \cos(2n\theta) + i \sin(2n\theta)) (1 - \cos(2n\theta) + i \sin(2n\theta))}{(1 - \cos(2n\theta) - i \sin(2n\theta)) (1 - \cos(2n\theta) + i \sin(2n\theta))}. \] Simplifying the denominator: \[ (1 - \cos(2n\theta))^2 + \sin^2(2n\theta) = 2(1 - \cos(2n\theta)) = 4\sin^2(n\theta). \] The numerator simplifies to: \[ i \cot n\theta. \] Thus, the value of the given expression is \( i \cot n\theta \).
Was this answer helpful?
1
3
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

Given: Let \( n \) be an integer and \[ Z = \cos \theta + i \sin \theta, \] with \( \theta \neq (2n + 1) \frac{\pi}{2} \). Find the value of: \[ \frac{1 + Z^{2n}}{1 - Z^{2n}}. \]

Step 1: Express \( Z^{2n} \) using Euler’s formula Recall that \[ Z = e^{i\theta} \implies Z^{2n} = e^{i 2n \theta} = \cos 2n\theta + i \sin 2n\theta. \]

Step 2: Simplify the expression \[ \frac{1 + Z^{2n}}{1 - Z^{2n}} = \frac{1 + \cos 2n\theta + i \sin 2n\theta}{1 - \cos 2n\theta - i \sin 2n\theta}. \] Multiply numerator and denominator by the conjugate of the denominator: \[ \frac{(1 + \cos 2n\theta) + i \sin 2n\theta}{(1 - \cos 2n\theta) - i \sin 2n\theta} \times \frac{(1 - \cos 2n\theta) + i \sin 2n\theta}{(1 - \cos 2n\theta) + i \sin 2n\theta}. \]

Step 3: Calculate numerator and denominator separately Denominator: \[ (1 - \cos 2n\theta)^2 + (\sin 2n\theta)^2 = 1 - 2\cos 2n\theta + \cos^2 2n\theta + \sin^2 2n\theta = 2 - 2\cos 2n\theta = 4 \sin^2 n\theta, \] using the identity \( 1 - \cos 2A = 2 \sin^2 A \). Numerator: \[ [(1 + \cos 2n\theta)(1 - \cos 2n\theta) - \sin^2 2n\theta] + i[(1 + \cos 2n\theta) \sin 2n\theta + \sin 2n\theta (1 - \cos 2n\theta)]. \] Simplify the real part: \[ (1 - \cos^2 2n\theta) - \sin^2 2n\theta = \sin^2 2n\theta - \sin^2 2n\theta = 0. \] Simplify the imaginary part: \[ \sin 2n\theta (1 + \cos 2n\theta + 1 - \cos 2n\theta) = \sin 2n\theta \times 2 = 2 \sin 2n\theta. \] Therefore, numerator is: \[ i \times 2 \sin 2n\theta. \]

Step 4: Final expression \[ \frac{1 + Z^{2n}}{1 - Z^{2n}} = \frac{i \times 2 \sin 2n\theta}{4 \sin^2 n\theta} = \frac{i \sin 2n\theta}{2 \sin^2 n\theta}. \] Using the identity \( \sin 2A = 2 \sin A \cos A \), \[ = \frac{i \times 2 \sin n\theta \cos n\theta}{2 \sin^2 n\theta} = i \frac{\cos n\theta}{\sin n\theta} = i \cot n\theta. \]

Final answer: \[ \boxed{i \cot n\theta}. \]
Was this answer helpful?
0
0