We are given \( Z = \cos \theta + i \sin \theta \), which is the polar form of a complex number, and we are asked to evaluate:
\[
\frac{1 + Z^{2n}}{1 - Z^{2n}}.
\]
Using De Moivre's theorem, we know:
\[
Z^{2n} = \cos(2n\theta) + i \sin(2n\theta).
\]
Step 1: Substituting for \( Z^{2n} \)
Substituting into the expression:
\[
\frac{1 + \cos(2n\theta) + i \sin(2n\theta)}{1 - \cos(2n\theta) - i \sin(2n\theta)}.
\]
Step 2: Simplifying the expression
Multiply the numerator and the denominator by the conjugate of the denominator:
\[
\frac{(1 + \cos(2n\theta) + i \sin(2n\theta)) (1 - \cos(2n\theta) + i \sin(2n\theta))}{(1 - \cos(2n\theta) - i \sin(2n\theta)) (1 - \cos(2n\theta) + i \sin(2n\theta))}.
\]
Simplifying the denominator:
\[
(1 - \cos(2n\theta))^2 + \sin^2(2n\theta) = 2(1 - \cos(2n\theta)) = 4\sin^2(n\theta).
\]
The numerator simplifies to:
\[
i \cot n\theta.
\]
Thus, the value of the given expression is \( i \cot n\theta \).