Question:

If $n \geq 2$ is a positive integer, then the sum of the series ${ }^{n+1} C_{2}+2\left({ }^{2} C_{2}+{ }^{3} C_{2}+{ }^{4} C_{2}+\ldots .+{ }^{n} C_{2}\right)$ is:

Updated On: Sep 30, 2024
  • $\frac{ n ( n -1)(2 n +1)}{6}$
  • $\frac{ n ( n +1)(2 n +1)}{6}$
  • $\frac{ n (2 n +1)(3 n +1)}{6}$
  • $\frac{ n ( n +1)^{2}( n +2)}{12}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

${ }^{n+1} C_{2}+2\left({ }^{2} C_{2}+{ }^{3} C_{2}+{ }^{4} C_{2}+\ldots \ldots .+{ }^{n} C_{2}\right)$ ${ }^{n+1} C_{2}+2\left({ }^{3} C_{3}+{ }^{3} C_{2}+{ }^{4} C_{2}+\ldots \ldots .+{ }^{n} C_{2}\right)$ $\left\{\right.$ use $\left.{ }^{n} C_{r+1}+{ }^{n} C_{r}={ }^{n+1} C_{r}\right\}$ $={ }^{n+1} C_{2}+2\left({ }^{4} C_{3}+{ }^{4} C_{2}+{ }^{5} C_{3}+\ldots \ldots+{ }^{n} C_{2}\right)$ ${ }^{n+1} C_{2}+2\left({ }^{5} C_{3}+{ }^{5} C_{2}+\ldots \ldots .+{ }^{n} C_{2}\right) \vdots$ $={ }^{n+1} C_{2}+2\left({ }^{n} C_{3}+{ }^{n} C_{2}\right)$ $={ }^{n+1} C_{2}+2 \cdot{ }^{n+1} C_{3}$ $=\frac{(n+1) n}{2}+2 \cdot \frac{(n+1)(n)(n-1)}{2.3}$ $ =\frac{n(n+1)(2 n+1)}{6}$
Was this answer helpful?
0
0

Concepts Used:

Binomial Theorem

The binomial theorem formula is used in the expansion of any power of a binomial in the form of a series. The binomial theorem formula is 

Properties of Binomial Theorem

  • The number of coefficients in the binomial expansion of (x + y)n is equal to (n + 1).
  • There are (n+1) terms in the expansion of (x+y)n.
  • The first and the last terms are xn and yn respectively.
  • From the beginning of the expansion, the powers of x, decrease from n up to 0, and the powers of a, increase from 0 up to n.
  • The binomial coefficients in the expansion are arranged in an array, which is called Pascal's triangle. This pattern developed is summed up by the binomial theorem formula.