We begin by expanding the terms in the given expression. Using the Taylor series expansion of \( \cos x \) around \( x = 0 \), we have:
\[
\cos(2x) = 1 - \frac{(2x)^2}{2!} + \frac{(2x)^4}{4!} + O(x^6)
\]
\[
\cos(4x) = 1 - \frac{(4x)^2}{2!} + \frac{(4x)^4}{4!} + O(x^6)
\]
Thus, the given expression becomes:
\[
L = \lim_{x \to 0} \frac{ \left( 1 - \frac{(2x)^2}{2!} + \frac{(2x)^4}{4!} \right) + a \left( 1 - \frac{(4x)^2}{2!} + \frac{(4x)^4}{4!} \right) - b }{x^4}
\]
Simplifying the expression:
\[
L = \frac{1 + a - b}{x^4} + \frac{a \cdot \frac{(4x)^2}{2!} + O(x^4)}{x^4} + \text{higher order terms}
\]
For the limit to be finite, the coefficient of \( x^4 \) in the numerator must be zero. Therefore, solving for the values of \( a \) and \( b \):
\[
1 + a - b = 0 \quad \text{and} \quad 2a + 8a = 0 \Rightarrow a = -\frac{1}{4}
\]
Now, substitute \( a \) into the equation:
\[
b = a + 1 \quad \Rightarrow \quad b = -\frac{1}{4} + 1 = \frac{3}{4}
\]
Thus, we get:
\[
a + b = -\frac{1}{4} + \frac{3}{4} = \frac{1}{2}
\]