For \( \alpha, \beta, \gamma \in \mathbb{R} \), if \[ \lim_{x \to 0} \frac{x^2 \sin(\alpha x) + (\gamma - 1)e^{x^2}}{\sin(2x - \beta x)} = 3, \] then \( \beta + \gamma - \alpha \) is equal to:
If $\lim_{x \to 1} \frac{(x-1)(6+\lambda \cos(x-1)) + \mu \sin(1-x)}{(x-1)^3} = -1$, where $\lambda, \mu \in \mathbb{R}$, then $\lambda + \mu$ is equal to

Consider the above reaction, what mass of CaCl₂ will be formed if 250 ml of 0.76 M HCl reacts with 1000 g of CaCO₃?
A point particle of charge \( Q \) is located at \( P \) along the axis of an electric dipole 1 at a distance \( r \) as shown in the figure. The point \( P \) is also on the equatorial plane of a second electric dipole 2 at a distance \( r \). The dipoles are made of opposite charge \( q \) separated by a distance \( 2a \). For the charge particle at \( P \) not to experience any net force, which of the following correctly describes the situation?
