Question:

If $ \lim_{x \to 0} \frac{\cos(2x) + a \cos(4x) - b}{x^4} $ is finite, then $ (a + b) $ is equal to:

Show Hint

In limits involving higher powers, use Taylor expansions to approximate the terms. This helps to identify the coefficients that must satisfy the condition for the limit to exist.
Updated On: Apr 27, 2025
  • \( \frac{1}{2} \)
  • 0
  • \( \frac{3}{4} \)
  • -1
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

We begin by expanding the terms in the given expression. Using the Taylor series expansion of \( \cos x \) around \( x = 0 \), we have: \[ \cos(2x) = 1 - \frac{(2x)^2}{2!} + \frac{(2x)^4}{4!} + O(x^6) \] \[ \cos(4x) = 1 - \frac{(4x)^2}{2!} + \frac{(4x)^4}{4!} + O(x^6) \] Thus, the given expression becomes: \[ L = \lim_{x \to 0} \frac{ \left( 1 - \frac{(2x)^2}{2!} + \frac{(2x)^4}{4!} \right) + a \left( 1 - \frac{(4x)^2}{2!} + \frac{(4x)^4}{4!} \right) - b }{x^4} \] Simplifying the expression: \[ L = \frac{1 + a - b}{x^4} + \frac{a \cdot \frac{(4x)^2}{2!} + O(x^4)}{x^4} + \text{higher order terms} \] For the limit to be finite, the coefficient of \( x^4 \) in the numerator must be zero. Therefore, solving for the values of \( a \) and \( b \): \[ 1 + a - b = 0 \quad \text{and} \quad 2a + 8a = 0 \Rightarrow a = -\frac{1}{4} \] Now, substitute \( a \) into the equation: \[ b = a + 1 \quad \Rightarrow \quad b = -\frac{1}{4} + 1 = \frac{3}{4} \] Thus, we get: \[ a + b = -\frac{1}{4} + \frac{3}{4} = \frac{1}{2} \]
Was this answer helpful?
0
0

Questions Asked in JEE Main exam

View More Questions