Given the complex number \( z = \left( \frac{3}{2} + i \frac{\sqrt{3}}{2} \right) \), we want to compute \( z^{50} = 3^{25}(x + iy) \) and find the ordered pair \( (2x, 2y) \).
Firstly, identify \( z \) in polar form. The modulus of \( z \) is calculated as:
\[ |z| = \sqrt{\left(\frac{3}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = \sqrt{\frac{9}{4} + \frac{3}{4}} = \sqrt{3} \]
The argument \( \theta \) is determined by:
\[ \tan\theta = \frac{\frac{\sqrt{3}}{2}}{\frac{3}{2}} = \frac{\sqrt{3}}{3} \]
which gives \(\theta = \frac{\pi}{6}\). Therefore, the polar form is:
\[ z = \sqrt{3} \left( \cos\frac{\pi}{6} + i\sin\frac{\pi}{6} \right) \]
Using De Moivre’s Theorem, \( z^{50} \) is:
\[ z^{50} = (\sqrt{3})^{50} \left( \cos\left(50 \times \frac{\pi}{6}\right) + i\sin\left(50 \times \frac{\pi}{6}\right) \right) \]
Now, compute the powers:
\[ (\sqrt{3})^{50} = (3^{0.5})^{50} = 3^{25} \]
Next, simplify the angle:
\[ 50 \times \frac{\pi}{6} = \frac{50\pi}{6} = \frac{25\pi}{3} \]
Find the equivalent angle within \( 2\pi \) by subtracting \( 8\pi \) (since \(\frac{25\pi}{3} - 8\pi = \frac{\pi}{3}\)):
The angle simplifies to:
\[ \frac{25\pi}{3} \equiv \frac{\pi}{3} \text{ (mod } 2\pi) \]
Thus,
\[ z^{50} = 3^{25} \left( \cos\frac{\pi}{3} + i\sin\frac{\pi}{3} \right) \]
Substitute \(\cos \frac{\pi}{3} = \frac{1}{2}\) and \(\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}\):
\[ z^{50} = 3^{25} \left( \frac{1}{2} + i\frac{\sqrt{3}}{2} \right) \]
Thus, \( x = \frac{1}{2} \) and \( y = \frac{\sqrt{3}}{2} \), giving \( (2x, 2y) = (1, \sqrt{3}) \).
The ordered pair is \((1, \sqrt{3})\).
We begin by expressing \( \frac{3}{2} + i \frac{\sqrt{3}}{2} \) in polar form.
The modulus is: \[ r = \sqrt{\left(\frac{3}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = \sqrt{\frac{9}{4} + \frac{3}{4}} = \sqrt{\frac{12}{4}} = \sqrt{3} \] The argument \( \theta \) is: \[ \theta = \tan^{-1}\left(\frac{\frac{\sqrt{3}}{2}}{\frac{3}{2}}\right) = \tan^{-1}\left(\frac{\sqrt{3}}{3}\right) = \frac{\pi}{6} \] Thus, \( \frac{3}{2} + i \frac{\sqrt{3}}{2} = \sqrt{3} \text{cis} \frac{\pi}{6} \), where \( \text{cis} \theta = \cos \theta + i \sin \theta \). Now, raising both sides to the power of 50: \[ \left( \sqrt{3} \text{cis} \frac{\pi}{6} \right)^{50} = \left( \sqrt{3} \right)^{50} \text{cis} \left( 50 \times \frac{\pi}{6} \right) = 3^{25} \text{cis} \left( \frac{50\pi}{6} \right) \] Since \( \frac{50\pi}{6} = 8\pi + \frac{\pi}{3} \), the argument simplifies to \( \frac{\pi}{3} \). Therefore, the expression becomes: \[ 3^{25} \left( \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right) \] This corresponds to: \[ 3^{25} \left( \frac{1}{2} + i \frac{\sqrt{3}}{2} \right) \] Now comparing this with the given expression \( 3^{25}(x + iy) \), we have: \[ x = \frac{1}{2}, \quad y = \frac{\sqrt{3}}{2} \] Therefore, the ordered pair \( (2x, 2y) \) is: \[ (2x, 2y) = (1, \sqrt{3}) \]
Let \( z \) satisfy \( |z| = 1, \ z = 1 - \overline{z} \text{ and } \operatorname{Im}(z)>0 \)
Then consider:
Statement-I: \( z \) is a real number
Statement-II: Principal argument of \( z \) is \( \dfrac{\pi}{3} \)
Then:
If \( z \) and \( \omega \) are two non-zero complex numbers such that \( |z\omega| = 1 \) and
\[ \arg(z) - \arg(\omega) = \frac{\pi}{2}, \]
Then the value of \( \overline{z\omega} \) is:
A solid cylinder of mass 2 kg and radius 0.2 m is rotating about its own axis without friction with angular velocity 5 rad/s. A particle of mass 1 kg moving with a velocity of 5 m/s strikes the cylinder and sticks to it as shown in figure.
The angular velocity of the system after the particle sticks to it will be: