Question:

If $\left(\frac{3}{2}+i\frac{\sqrt{3}}{2}\right)^{50} \, =3^{25} \left(x+iy\right),$ where $x$ and $y$ are real, then the ordered pair $(x,y)$ is

Updated On: Jun 18, 2022
  • $(-3, 0)$
  • $(0, 3)$
  • $(0, -3)$
  • $\left(\frac{1}{2},\frac{\sqrt{3}}{2}\right)$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Let $z=\frac{3}{2}+i \frac{\sqrt{3}}{2}$
$r=\sqrt{\frac{9}{4}+\frac{3}{4}}=\sqrt{\frac{12}{4}}=\sqrt{3}$
$\theta =\tan ^{-1}\left(\frac{\frac{\sqrt{3}}{2}}{\frac{3}{2}}\right)$
$=\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)=\frac{\pi}{6}$
$\therefore \frac{3}{2}+\frac{i \sqrt{3}}{2}=\sqrt{3} e^{\frac{i \pi}{6}}$
$\therefore \left(\frac{3}{2}+i \frac{\sqrt{3}}{2}\right)^{50}=\left(\sqrt{3} e^{\frac{i \pi}{6}}\right)^{50}$
$=(\sqrt{3})^{50}\left(e^{\frac{i \pi}{6}}\right)^{50}=3^{25} e^{\frac{50 \pi}{6}}$
$\Rightarrow\left(\frac{3}{2}+\frac{i \sqrt{3}}{2}\right)^{50}=3^{25} e^{\frac{i 25 \pi}{3}}$
$=3^{25}\left(\cos \frac{25 \pi}{3}+i \sin \frac{25 \pi}{3}\right)$
$=3^{25}(\cos 1500+i \sin 1500)$
$\left.=3^{25}[\cos (360 \times 4+60)+i \sin (360) \times 4+60)\right]$
$=3^{25}(\cos 60+i \sin 60)$
$\Rightarrow\left(\frac{3}{2}+i \frac{\sqrt{3}}{2}\right)^{50}=3^{25}\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)$ ...(i)
According to question,
$\left(\frac{3}{2}+i \frac{\sqrt{3}}{2}\right)^{50}=3^{25}(x +i y)$
$3^{25}\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)=3^{25}(x +i y)$
which is true only when $x=\frac{1}{2}, y=\frac{\sqrt{3}}{2}$
Was this answer helpful?
0
0

Concepts Used:

Complex Numbers and Quadratic Equations

Complex Number: Any number that is formed as a+ib is called a complex number. For example: 9+3i,7+8i are complex numbers. Here i = -1. With this we can say that i² = 1. So, for every equation which does not have a real solution we can use i = -1.

Quadratic equation: A polynomial that has two roots or is of the degree 2 is called a quadratic equation. The general form of a quadratic equation is y=ax²+bx+c. Here a≠0, b and c are the real numbers.