Let \( P=(-1,2) \) and its inverse point \( Q = \left(\frac{1}{10}, \frac{-1}{5}\right) \).
Circle \( S \equiv x^2+y^2-2x+4y+c=0 \).
Centre \( C = (-g,-f) \).
Here \( 2g=-2 \implies g=-1 \); \( 2f=4 \implies f=2 \).
So, centre \( C = (1,-2) \).
Radius \( R = \sqrt{g^2+f^2-c} = \sqrt{(-1)^2+2^2-c} = \sqrt{1+4-c} = \sqrt{5-c} \).
Property of inverse points: C, P, Q are collinear and \( CP \cdot CQ = R^2 \).
Distance CP:
\[ CP = \sqrt{(-1-1)^2 + (2-(-2))^2} = \sqrt{(-2)^2 + 4^2} = \sqrt{4+16} = \sqrt{20} \]
Distance CQ:
\[ CQ = \sqrt{\left(\frac{1}{10}-1\right)^2 + \left(\frac{-1}{5}-(-2)\right)^2} = \sqrt{\left(-\frac{9}{10}\right)^2 + \left(\frac{9}{5}\right)^2} \]
\[ = \sqrt{\frac{81}{100} + \frac{81}{25}} = \sqrt{\frac{81}{100} + \frac{324}{100}} = \sqrt{\frac{405}{100}} = \sqrt{\frac{81 \times 5}{100}} = \frac{9\sqrt{5}}{10} \]
Using \( CP \cdot CQ = R^2 \):
\[ \sqrt{20} \cdot \frac{9\sqrt{5}}{10} = R^2 \]
\[ (2\sqrt{5}) \cdot \frac{9\sqrt{5}}{10} = R^2 \]
\[ \frac{18 \cdot 5}{10} = R^2 \implies \frac{90}{10} = R^2 \implies 9 = R^2 \]
We have \( R^2 = 5-c \).
\[ 9 = 5-c \implies c = 5-9 = -4 \]
This matches option (2).