We are given that:
\[
\int \frac{x^3}{\sqrt{1 + x^2}} \, dx = A(1 + x^2)^{\frac{3}{2}} + B(1 + x^2)^{\frac{1}{2}} + C
\]
Differentiate both sides with respect to \( x \) using the chain rule:
\[
\frac{x^3}{\sqrt{1 + x^2}} = \frac{d}{dx}\left[ A(1 + x^2)^{\frac{3}{2}} + B(1 + x^2)^{\frac{1}{2}} \right]
\]
\[
= A \cdot \frac{3}{2}(1 + x^2)^{\frac{1}{2}} \cdot 2x + B \cdot \frac{1}{2}(1 + x^2)^{-\frac{1}{2}} \cdot 2x
\]
\[
= 3Ax(1 + x^2)^{\frac{1}{2}} + Bx(1 + x^2)^{-\frac{1}{2}}
\]
Multiply both terms by \( (1 + x^2)^{\frac{1}{2}} \) to simplify the left-hand side:
\[
x^3 = 3A x (1 + x^2) + Bx
\Rightarrow x^3 = x \left[ 3A(1 + x^2) + B \right]
\]
Divide both sides by \( x \) (since \( x \neq 0 \)):
\[
x^2 = 3A(1 + x^2) + B
\Rightarrow x^2 = 3A + 3A x^2 + B
\]
Rearranging:
\[
x^2 - 3A x^2 = 3A + B
\Rightarrow x^2(1 - 3A) = 3A + B
\]
Now equating coefficients:
- Coefficient of \( x^2 \): \( 1 - 3A = 0 \Rightarrow A = \frac{1}{3} \)
- Constant term: \( 3A + B = 0 \Rightarrow B = -3A = -1 \)
\[
A + B = \frac{1}{3} - 1 = -\frac{2}{3}
\]