Step 1: Understanding the Concept:
To integrate a function involving powers of trigonometric terms, we often divide the numerator and denominator by a suitable power of \(\cos x\) to transform the expression into a function of \(\tan x\).
Step 2: Detailed Explanation:
Divide numerator and denominator by \(\cos^3 x\):
\[ I = \int \frac{\tan x \sec^2 x}{\tan^3 x + 1} dx \]
Let \( u = \tan x \), then \( du = \sec^2 x dx \).
\[ I = \int \frac{u}{u^3 + 1} du = \int \frac{u}{(u+1)(u^2-u+1)} du \]
Using partial fractions:
\[ \frac{u}{(u+1)(u^2-u+1)} = \frac{A}{u+1} + \frac{Bu+C}{u^2-u+1} \]
Solving gives \( A = -1/3, B = 1/3, C = 1/3 \).
\[ I = -\frac{1}{3} \int \frac{1}{u+1} du + \frac{1}{3} \int \frac{u+1}{u^2-u+1} du \]
\[ I = -\frac{1}{3} \log|u+1| + \frac{1}{6} \int \frac{2u+2}{u^2-u+1} du \]
\[ I = -\frac{1}{3} \log|u+1| + \frac{1}{6} \log|u^2-u+1| + \frac{1}{2} \int \frac{1}{(u-1/2)^2 + (\sqrt{3}/2)^2} du \]
\[ I = -\frac{1}{3} \log|1+\tan x| + \frac{1}{6} \log|1-\tan x+\tan^2 x| + \frac{1}{\sqrt{3}} \tan^{-1} \left( \frac{2\tan x-1}{\sqrt{3}} \right) + C \]
Comparing with the given form:
\( \alpha = -1/3, \beta = 1/6, \gamma = 1/\sqrt{3} \).
Calculate \( 18(\alpha + \beta + \gamma^2) \):
\[ 18(-1/3 + 1/6 + 1/3) = 18(1/6) = 3 \]
Step 3: Final Answer:
The value is 3.