Question:

$ \, if \, I_ n = \int^{\pi}_{ -\pi} \frac { \sin \, n \, x }{ ( 1 + \pi ^x ) \sin \, x } dx , \, n = 0 , 1 , 2 , .............., then $

Updated On: Mar 18, 2024
  • $ I_ n = I_{ n + 2 } $
  • $ \displaystyle \sum^{10}_{ m = 1 } \, I _{ 2 m + 1 } = 10 \pi $
  • $ \displaystyle \sum^{10}_{ m = 1 } \, I _{ 2 m } = 10 $
  • $ I_ n = I_{ n + 1 } $
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Given \(\, if \, I_ n = \int^{\pi}_{ -\pi} \frac { sin \, n \, x }{ ( 1 + \pi ^x ) \, sin \, x } dx ,...............(1)\) 
Using \(\int^b_a \, f ( x ) \, dx = \int^b _a \, f ( b + a - x ) \, dx , we \, get\)
\(\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, I_n = \int^{\pi}_ {-\pi } \frac { \pi^{x } \, sin \, n x}{ ( 1 + \pi^x ) sin \, x } \, dx ................(2)\) 
On adding Eqs. (i) and (ii), we have 
\(\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, 2I_n = \int^{\pi}_ {-\pi } \frac { sin \, n x}{ sin \, x } \, dx = 2 \int^{\pi}_ 0 \frac { sin \, n x}{ sin \, x } \, dx\)
\(\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, [ \because f ( x ) = \frac { sin \, n x}{ sin \, x } \, is \, an \, even \, function ]\)
\(\Rightarrow \, \, \, \, \, \, \, \, \,\) \(I_n = \int^\pi _ 0 \frac { sin \, nx }{ simn \, x } \, dx\)
\(Now , I_{ n + 2 } - I_n = \int^{\pi}_0 \frac { sin ( n - 2 ) \, x - sin \, nx }{ sin \, x } \, dx\)
\(\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, = \int^\pi_0 \frac { 2 \, cos ( n + 1 ) \, x . sin \, x }{ sin \, x } \, dx\)
\(\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, = 2 \int^\pi_0 cos ( n + 1 ) \, x \, dx = 2 \bigg [ \frac { sin ( n + 1 ) \, x }{ ( n + 1 ) } \bigg ]^{\pi}_0 = 0\)
\(\therefore \, I_{ n + 2 } = I_n \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, ...................(3)\)
\(Since , \, \, \, \, \, \, \, \, \, \, \, \, \, \, I_n = \int^{\pi}_0 \frac {sin \, nx }{ sin \, x } \, dx\)
\(\Rightarrow\) \(\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, I_1 = \pi \, and \, I_2 = 0\) 
From E (iii) \(I_1 = I_3 = I_5 = .................= \pi\) 
and \(\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \,\) \(I_2 = I_4 = I_6 = .................= 0\)
\(\Rightarrow\) \(\displaystyle \sum^{10} I_{2m + 1 } = 10 \pi \, and \, \displaystyle \sum^{10} I_{2m } = 0\)
\(\therefore\) Correct options are (A), (B), (C).

Was this answer helpful?
1
0

Questions Asked in JEE Advanced exam

View More Questions

Concepts Used:

Integrals of Some Particular Functions

There are many important integration formulas which are applied to integrate many other standard integrals. In this article, we will take a look at the integrals of these particular functions and see how they are used in several other standard integrals.

Integrals of Some Particular Functions:

  • ∫1/(x2 – a2) dx = (1/2a) log|(x – a)/(x + a)| + C
  • ∫1/(a2 – x2) dx = (1/2a) log|(a + x)/(a – x)| + C
  • ∫1/(x2 + a2) dx = (1/a) tan-1(x/a) + C
  • ∫1/√(x2 – a2) dx = log|x + √(x2 – a2)| + C
  • ∫1/√(a2 – x2) dx = sin-1(x/a) + C
  • ∫1/√(x2 + a2) dx = log|x + √(x2 + a2)| + C

These are tabulated below along with the meaning of each part.