Given \(\, if \, I_ n = \int^{\pi}_{ -\pi} \frac { sin \, n \, x }{ ( 1 + \pi ^x ) \, sin \, x } dx ,...............(1)\)
Using \(\int^b_a \, f ( x ) \, dx = \int^b _a \, f ( b + a - x ) \, dx , we \, get\)
\(\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, I_n = \int^{\pi}_ {-\pi } \frac { \pi^{x } \, sin \, n x}{ ( 1 + \pi^x ) sin \, x } \, dx ................(2)\)
On adding Eqs. (i) and (ii), we have
\(\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, 2I_n = \int^{\pi}_ {-\pi } \frac { sin \, n x}{ sin \, x } \, dx = 2 \int^{\pi}_ 0 \frac { sin \, n x}{ sin \, x } \, dx\)
\(\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, [ \because f ( x ) = \frac { sin \, n x}{ sin \, x } \, is \, an \, even \, function ]\)
\(\Rightarrow \, \, \, \, \, \, \, \, \,\) \(I_n = \int^\pi _ 0 \frac { sin \, nx }{ simn \, x } \, dx\)
\(Now , I_{ n + 2 } - I_n = \int^{\pi}_0 \frac { sin ( n - 2 ) \, x - sin \, nx }{ sin \, x } \, dx\)
\(\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, = \int^\pi_0 \frac { 2 \, cos ( n + 1 ) \, x . sin \, x }{ sin \, x } \, dx\)
\(\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, = 2 \int^\pi_0 cos ( n + 1 ) \, x \, dx = 2 \bigg [ \frac { sin ( n + 1 ) \, x }{ ( n + 1 ) } \bigg ]^{\pi}_0 = 0\)
\(\therefore \, I_{ n + 2 } = I_n \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, ...................(3)\)
\(Since , \, \, \, \, \, \, \, \, \, \, \, \, \, \, I_n = \int^{\pi}_0 \frac {sin \, nx }{ sin \, x } \, dx\)
\(\Rightarrow\) \(\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, I_1 = \pi \, and \, I_2 = 0\)
From E (iii) \(I_1 = I_3 = I_5 = .................= \pi\)
and \(\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \,\) \(I_2 = I_4 = I_6 = .................= 0\)
\(\Rightarrow\) \(\displaystyle \sum^{10} I_{2m + 1 } = 10 \pi \, and \, \displaystyle \sum^{10} I_{2m } = 0\)
\(\therefore\) Correct options are (A), (B), (C).
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
A temperature difference can generate e.m.f. in some materials. Let $ S $ be the e.m.f. produced per unit temperature difference between the ends of a wire, $ \sigma $ the electrical conductivity and $ \kappa $ the thermal conductivity of the material of the wire. Taking $ M, L, T, I $ and $ K $ as dimensions of mass, length, time, current and temperature, respectively, the dimensional formula of the quantity $ Z = \frac{S^2 \sigma}{\kappa} $ is:
There are many important integration formulas which are applied to integrate many other standard integrals. In this article, we will take a look at the integrals of these particular functions and see how they are used in several other standard integrals.
These are tabulated below along with the meaning of each part.