Given \(\, if \, I_ n = \int^{\pi}_{ -\pi} \frac { sin \, n \, x }{ ( 1 + \pi ^x ) \, sin \, x } dx ,...............(1)\)
Using \(\int^b_a \, f ( x ) \, dx = \int^b _a \, f ( b + a - x ) \, dx , we \, get\)
\(\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, I_n = \int^{\pi}_ {-\pi } \frac { \pi^{x } \, sin \, n x}{ ( 1 + \pi^x ) sin \, x } \, dx ................(2)\)
On adding Eqs. (i) and (ii), we have
\(\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, 2I_n = \int^{\pi}_ {-\pi } \frac { sin \, n x}{ sin \, x } \, dx = 2 \int^{\pi}_ 0 \frac { sin \, n x}{ sin \, x } \, dx\)
\(\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, [ \because f ( x ) = \frac { sin \, n x}{ sin \, x } \, is \, an \, even \, function ]\)
\(\Rightarrow \, \, \, \, \, \, \, \, \,\) \(I_n = \int^\pi _ 0 \frac { sin \, nx }{ simn \, x } \, dx\)
\(Now , I_{ n + 2 } - I_n = \int^{\pi}_0 \frac { sin ( n - 2 ) \, x - sin \, nx }{ sin \, x } \, dx\)
\(\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, = \int^\pi_0 \frac { 2 \, cos ( n + 1 ) \, x . sin \, x }{ sin \, x } \, dx\)
\(\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, = 2 \int^\pi_0 cos ( n + 1 ) \, x \, dx = 2 \bigg [ \frac { sin ( n + 1 ) \, x }{ ( n + 1 ) } \bigg ]^{\pi}_0 = 0\)
\(\therefore \, I_{ n + 2 } = I_n \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, ...................(3)\)
\(Since , \, \, \, \, \, \, \, \, \, \, \, \, \, \, I_n = \int^{\pi}_0 \frac {sin \, nx }{ sin \, x } \, dx\)
\(\Rightarrow\) \(\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, I_1 = \pi \, and \, I_2 = 0\)
From E (iii) \(I_1 = I_3 = I_5 = .................= \pi\)
and \(\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \,\) \(I_2 = I_4 = I_6 = .................= 0\)
\(\Rightarrow\) \(\displaystyle \sum^{10} I_{2m + 1 } = 10 \pi \, and \, \displaystyle \sum^{10} I_{2m } = 0\)
\(\therefore\) Correct options are (A), (B), (C).
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?
There are many important integration formulas which are applied to integrate many other standard integrals. In this article, we will take a look at the integrals of these particular functions and see how they are used in several other standard integrals.
These are tabulated below along with the meaning of each part.
