We find the HCF(65, 117) using the Euclidean Algorithm:
\[
117 \div 65 = 1, \quad \text{remainder} = 52
\]
\[
65 \div 52 = 1, \quad \text{remainder} = 13
\]
\[
52 \div 13 = 4, \quad \text{remainder} = 0
\]
Thus, HCF(65, 117) = 13.
Now, express 13 as a linear combination:
\[
13 = 65 - 52 \times 1
\]
Since 52 = 117 - 65 \times 1, substitute:
\[
13 = 65 - (117 - 65 \times 1) \times 1
\]
\[
13 = 65 - 117 + 65
\]
\[
13 = 2 \times 65 - 117
\]
Thus, comparing with \( 65m + 117n = 13 \), we get:
\[
m = 2
\]
Thus, the correct answer is 2.